Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Francesc Castella"'
Publikováno v:
Annales mathématiques du Québec. 46:325-346
R\'esum\'eLet$$E/{\mathbb {Q}}$$E/Qbe a CM elliptic curve andpa prime of good ordinary reduction forE. We show that if$$\text {Sel}_{p^\infty }(E/{\mathbb {Q}})$$Selp∞(E/Q)has$${\mathbb {Z}}_p$$Zp-corank one, then$$E({\mathbb {Q}})$$E(Q)has a point
Autor:
Adebisi Agboola, Francesc Castella
Publikováno v:
Journal de Théorie des Nombres de Bordeaux. 33:629-658
Publikováno v:
Journal of the European Mathematical Society
In the late 1990's, R. Coleman and R. Greenberg (independently) asked for a global property characterizing those $p$-ordinary cuspidal eigenforms whose associated Galois representation becomes decomposable upon restriction to a decomposition group at
Publikováno v:
Forum of Mathematics, Sigma. 10
In this paper, we prove one divisibility of the Iwasawa–Greenberg main conjecture for the Rankin–Selberg product of a weight two cusp form and an ordinary complex multiplication form of higher weight, using congruences between Klingen Eisenstein
Let $E/\mathbf{Q}$ be an elliptic curve of conductor $N$, let $p>3$ be a prime where $E$ has good ordinary reduction, and let $K$ be an imaginary quadratic field satisfying the Heegner hypothesis. In 1987, Perrin-Riou formulated an Iwasawa main conje
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bda53251953aeeb35e738e8cc24b8715
https://resolver.caltech.edu/CaltechAUTHORS:20211130-203141758
https://resolver.caltech.edu/CaltechAUTHORS:20211130-203141758
Autor:
Francesc Castella, Xin Wan
Publikováno v:
Advances in Mathematics. 400:108266
Let $E/\mathbb{Q}$ be an elliptic curve, and $p$ a prime where $E$ has good reduction, and assume that $E$ admits a rational $p$-isogeny. In this paper, we study the anticyclotomic Iwasawa theory of $E$ over an imaginary quadratic field in which $p$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::efaad1494e79ee57101aadb8dcb16fbd
Publikováno v:
Algebra Number Theory 11, no. 10 (2017), 2339-2368
Building on the construction of big Heegner points in the quaternionic setting, and their relation to special values of Rankin-Selberg $L$-functions, we obtain anticyclotomic analogues of the results of Emerton-Pollack-Weston on the variation of Iwas
Autor:
Francesc Castella
Publikováno v:
Journal of the London Mathematical Society. 96:156-180
Autor:
Ming-Lun Hsieh, Francesc Castella
Publikováno v:
Mathematische Annalen. 370:567-628
In this paper, we deduce the vanishing of Selmer groups for the Rankin–Selberg convolution of a cusp form with a theta series of higher weight from the nonvanishing of the associated L-value, thus establishing the rank 0 case of the Bloch–Kato co