Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Francesc Bars"'
Autor:
Francesc Bars, Josep González
Publikováno v:
Journal of Algebra. 559:726-759
Let N ≥ 1 be a integer such that the modular curve X 0 ⁎ ( N ) has genus ≥2. We prove that X 0 ⁎ ( N ) is bielliptic exactly for 69 values of N. In particular, we obtain that X 0 ⁎ ( N ) is bielliptic over the base field for all these value
Publikováno v:
The Ramanujan Journal. 56:103-120
For a square-free integer N, we present a procedure to compute $$\mathbb {Q}$$ -curves parametrized by rational points of the modular curve $$X_0^*(N)$$ when this is hyperelliptic.
Autor:
Eslam Badr, Francesc Bars
Publikováno v:
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Universitat Autònoma de Barcelona
Let C / k ‾ be a smooth plane curve defined over k ‾ , a fixed algebraic closure of a perfect field k. We call a subfield k ′ ⊆ k ‾ a plane model-field of definition for C if C descends to k ′ as a smooth plane curve over k ′ , that is
Publikováno v:
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Universitat Autònoma de Barcelona
We prove an Iwasawa Main Conjecture for the class group of the $\mathfrak{p}$-cyclotomic extension $\mathcal{F}$ of the function field $\mathbb{F}_q(\theta)$ ($\mathfrak{p}$ is a prime of $\mathbb{F}_q[\theta]\,$), showing that its Fitting ideal is g
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::17665846189ba208f5d461ef9662389f
https://ddd.uab.cat/record/240658
https://ddd.uab.cat/record/240658
Publikováno v:
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Universitat Autònoma de Barcelona
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Let N ≥ 1 be an square free integer and let W N be a non-trivial subgroup of the group of the Atkin-Lehner involutions of X 0 ( N ) such that the modular curve X 0 ( N ) / W N has genus at least two. We determine all pairs ( N , W N ) such that X 0
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fab003b036b1a5cc6510a23aecb77dba
https://ddd.uab.cat/record/240665
https://ddd.uab.cat/record/240665
Autor:
Josep González, Francesc Bars
Publikováno v:
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Universitat Autònoma de Barcelona
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
We determine the automorphism group of the modular curve $X_0^*(N)$, obtained as the quotient of the modular curve $X_0(N)$ by the group of its Atkin-Lehner involutions, for all square-free values of $N$.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::22797d3980e05f06f2f863f8d5b59872
Autor:
Eslam Badr, Francesc Bars
Publikováno v:
International Journal of Algebra and Computation. 26:399-433
Let [Formula: see text] be the moduli space of smooth, genus [Formula: see text] curves over an algebraically closed field [Formula: see text] of zero characteristic. Denote by [Formula: see text] the subset of [Formula: see text] of curves [Formula:
Publikováno v:
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Universitat Autònoma de Barcelona
We generalize some results of Greither and Popescu to a geometric Galois cover $X\rightarrow Y$ which appears naturally for example in extensions generated by $\mathfrak{p}^n$-torsion points of a rank 1 normalized Drinfeld module (i.e. in subextensio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ecac5103908c2f935377545d990b01a4
https://ddd.uab.cat/record/240659
https://ddd.uab.cat/record/240659
Publikováno v:
Mathematics of Computation
Mathematics of Computation, American Mathematical Society, In press, 〈10.1090/mcom/3317〉
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Mathematics of Computation, American Mathematical Society, 2018, 88 (315), pp.421-438. ⟨10.1090/mcom/3317⟩
Mathematics of Computation, 2018, 88 (315), pp.421-438. ⟨10.1090/mcom/3317⟩
Mathematics of Computation, American Mathematical Society, In press, 〈10.1090/mcom/3317〉
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Mathematics of Computation, American Mathematical Society, 2018, 88 (315), pp.421-438. ⟨10.1090/mcom/3317⟩
Mathematics of Computation, 2018, 88 (315), pp.421-438. ⟨10.1090/mcom/3317⟩
International audience; Given a smooth curve defined over a field $k$ that admits a non-singular plane model over $\overline{k}$, a fixed separable closure of $k$, it does not necessarily have a non-singular plane model defined over the field $k$. We
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6288ff049966089971086bf0e2eecb83
https://ddd.uab.cat/record/240667
https://ddd.uab.cat/record/240667
Autor:
Francesc Bars, Eslam Badr
Publikováno v:
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Universitat Autònoma de Barcelona
Given a smooth projective variety of dimension n − 1 ≥ 1 defined over a perfect field k that admits a non-singular hypersurface model in Pnk− over k−, a fixed algebraic closure of k, it does not necessarily have a non-singular hypersurface mo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5b7713817c7ce91ddb0ccf647b2323c7
http://arxiv.org/abs/1804.06118
http://arxiv.org/abs/1804.06118