Zobrazeno 1 - 10
of 30
pro vyhledávání: '"France, Michel Mendès"'
Publikováno v:
Beyond quasicrystals (Les Houches, 1994), 293--367, Springer, Berlin, 1995
In the following pages we discuss infinite sequences defined on a finite alphabet, and more specially those which are generated by finite automata. We have divided our paper into seven parts which are more or less self-contained. Needless to say, we
Externí odkaz:
http://arxiv.org/abs/2212.08857
Publikováno v:
Acta Arith. 159 (2013) 47--61
Let $F(X) = \sum_{n \geq 0} (-1)^{\varepsilon_n} X^{-\lambda_n}$ be a real lacunary formal power series, where $\varepsilon_n = 0, 1$ and $\lambda_{n+1}/\lambda_n > 2$. It is known that the denominators $Q_n(X)$ of the convergents of its continued fr
Externí odkaz:
http://arxiv.org/abs/1202.0211
Publikováno v:
Journal of Combinatorial Theory, Series A 119 (2012) 655-667
We discuss counting problems linked to finite versions of Cantor's diagonal of infinite tableaux. We extend previous results of [2] by refining an equivalence relation that reduces significantly the exhaustive generation. New enumerative results foll
Externí odkaz:
http://arxiv.org/abs/1104.1083
The object under study is a particular closed curve on the square lattice $\Z^2$ related with the Fibonacci sequence $F_n$. It belongs to a class of curves whose length is $4F_{3n+1}$, and whose interiors by translation tile the plane. The limit obje
Externí odkaz:
http://arxiv.org/abs/1103.6171
This article could be called "theme and variations" on Cantor's celebrated diagonal argument. Given a square nxn tableau T=(a_i^j) on a finite alphabet A, let L be the set of its row-words. The permanent Perm(T) is the set of words a_{\pi(1)}^1 a_{\p
Externí odkaz:
http://arxiv.org/abs/math/0308081
Autor:
France, Michel Mendes
Publikováno v:
The American Mathematical Monthly, 1993 Oct 01. 100(8), 743-748.
Externí odkaz:
https://www.jstor.org/stable/2324779
Autor:
France, Michel Mendès, Hénaut, Alain
Publikováno v:
Leonardo, 1994 Jan 01. 27(3), 219-221.
Externí odkaz:
https://www.jstor.org/stable/1576055
Autor:
France, Michel Mendès
Publikováno v:
Leonardo, 1999 Jan 01. 32(4), 306-306.
Externí odkaz:
https://www.jstor.org/stable/1576727
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Experiment. Math. 9, iss. 3 (2000), 339-350
We study the average number of intersecting points of a given curve with random hyperplanes in an $n$-dimensional Euclidean space. As noticed by A. Edelman and E. Kostlan, this problem is closely linked to finding the average number of real zeros of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=project_eucl::7585340b9b2b60482c1d75c07db0842b
http://projecteuclid.org/euclid.em/1045604669
http://projecteuclid.org/euclid.em/1045604669