Zobrazeno 1 - 3
of 3
pro vyhledávání: '"François Torregrossa"'
Publikováno v:
International Journal of Data Science and Analytics
International Journal of Data Science and Analytics, Springer Verlag, 2021, 11 (2), pp.85-103. ⟨10.1007/s41060-021-00242-8⟩
International Journal of Data Science and Analytics, 2021, 11 (2), pp.85-103. ⟨10.1007/s41060-021-00242-8⟩
International Journal of Data Science and Analytics, Springer Verlag, 2021, 11 (2), pp.85-103. ⟨10.1007/s41060-021-00242-8⟩
International Journal of Data Science and Analytics, 2021, 11 (2), pp.85-103. ⟨10.1007/s41060-021-00242-8⟩
International audience; Word Embeddings have proven to be effective for many Natural Language Processing tasks by providing word representations integrating prior knowledge. In this article, we focus on the algorithms and models used to compute those
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7301a886ce62d3f070714a5e1991cf1b
https://hal.archives-ouvertes.fr/hal-03148517/document
https://hal.archives-ouvertes.fr/hal-03148517/document
Autor:
Cheikh Brahim El Vaigh, Robin Allesiardo, François Torregrossa, Guillaume Gravier, Pascale Sébillot
Publikováno v:
ICTAI 2020-IEEE 32nd International Conference on Tools with Artificial Intelligence
ICTAI 2020-IEEE 32nd International Conference on Tools with Artificial Intelligence, Nov 2020, Virtual, United States. pp.1-6
ICTAI
ICTAI 2020-IEEE 32nd International Conference on Tools with Artificial Intelligence, Nov 2020, Virtual, United States. pp.1-6
ICTAI
International audience; Entity alignment is a crucial tool in knowledge discovery to reconcile knowledge from different sources. Recent state-of-the-art approaches leverage joint embedding of knowledge graphs (KGs) so that similar entities from diffe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::feff48882385bfb6b7a72dd341f25399
https://hal.inria.fr/hal-02999303/document
https://hal.inria.fr/hal-02999303/document
Publikováno v:
Communications in Computer and Information Science ISBN: 9783030368074
ICONIP (4)
ICONIP (4)
Training deep networks requires large volumes of data. However, for many companies developing new products, those data may not be available and public data-sets may not be adapted to their particular use-case. In this paper, we explain how we achieve
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::181b61cee5ead07f2565cbf12fa53bea
https://doi.org/10.1007/978-3-030-36808-1_27
https://doi.org/10.1007/978-3-030-36808-1_27