Zobrazeno 1 - 10
of 34
pro vyhledávání: '"François Dahmani"'
Autor:
François Dahmani
Publikováno v:
Winter Braids Lecture Notes. 6:1-22
Autor:
Ruoyu Li, François Dahmani
Publikováno v:
Journal of Topology and Analysis. 14:55-92
We prove that for a free product G with free factor system [Formula: see text], any automorphism [Formula: see text] preserving [Formula: see text], atoroidal (in a sense relative to [Formula: see text]) and none of whose power send two different con
Autor:
François Dahmani, Mahan Mj
Publikováno v:
Journal de l’École polytechnique — Mathématiques. 6:425-432
Autor:
François Dahmani, Suraj Krishna M S
Let $G$ be a torsion-free hyperbolic group and $\alpha$ an automorphism of $G$. We show that there exists a canonical collection of subgroups that are polynomially growing under $\alpha$, and that the mapping torus of $G$ by $\alpha$ is hyperbolic re
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::089fdb59c04a17d718ad00589cb34392
Autor:
Carolyn R. Abbott, François Dahmani
Publikováno v:
Mathematische Zeitschrift. 291:555-568
We prove that every acylindrically hyperbolic group that has no non-trivial finite normal subgroup satisfies a strong ping pong property, the $$P_{naive}$$ property: for any finite collection of elements $$h_1, \dots , h_k$$ , there exists another el
Autor:
François Dahmani
Publikováno v:
Geom. Topol.
Geom. Topol., 2018, 22, pp.4113-4144. ⟨10.2140/gt.2018.22.4113⟩
Geom. Topol. 22, no. 7 (2018), 4113-4144
Geom. Topol., 2018, 22, pp.4113-4144. ⟨10.2140/gt.2018.22.4113⟩
Geom. Topol. 22, no. 7 (2018), 4113-4144
We study the normal closure of a big power of one or several Dehn twists in a Mapping Class Group. We prove that it has a presentation whose relators consists only of commutators between twists of disjoint support, thus answering a question of Ivanov
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0e18558349bcfc68154bbfec1e2e5348
https://hal.archives-ouvertes.fr/hal-01648958
https://hal.archives-ouvertes.fr/hal-01648958
Autor:
François Dahmani, Vincent Guirardel
Publikováno v:
Duke Math. J. 167, no. 12 (2018), 2189-2241
IF_PREPUB. 37 pages. 2015
Duke Mathematical Journal
Duke Mathematical Journal, Duke University Press, 2018, 167 (12), pp.2189-2241. ⟨10.1215/00127094-2018-0014⟩
Duke Mathematical Journal, 2018, 167 (12), pp.2189-2241. ⟨10.1215/00127094-2018-0014⟩
IF_PREPUB. 37 pages. 2015
Duke Mathematical Journal
Duke Mathematical Journal, Duke University Press, 2018, 167 (12), pp.2189-2241. ⟨10.1215/00127094-2018-0014⟩
Duke Mathematical Journal, 2018, 167 (12), pp.2189-2241. ⟨10.1215/00127094-2018-0014⟩
Dehn fillings for relatively hyperbolic groups generalize the topological Dehn surgery on a non-compact hyperbolic $3$-manifold such as a hyperbolic knot complement. We prove a rigidity result saying that if two non-elementary relatively hyperbolic g
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4200fcda72570428552a33433fa75d4c
https://projecteuclid.org/euclid.dmj/1532073620
https://projecteuclid.org/euclid.dmj/1532073620
Publikováno v:
Mathematical Proceedings
Mathematical Proceedings, Cambridge University Press (CUP), 2018, pp.1-26
Mathematical Proceedings, Cambridge University Press (CUP), 2018, pp.1-26
We prove that non-elementary hyperbolic groups grow exponentially more quickly than their infinite index quasiconvex subgroups. The proof uses the classical tools of automatic structures and Perron-Frobenius theory. We also extend the main result to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a280b51d8ca19d86c1ae4583821bf55e
https://hal.archives-ouvertes.fr/hal-01986976
https://hal.archives-ouvertes.fr/hal-01986976
Autor:
François Dahmani, Indira Chatterji
We show that for any group $G$ that is hyperbolic relative to subgroups that admit a proper affine isometric action on a uniformly convex Banach space, then $G$ acts properly on a uniformly convex Banach space as well.
28 pages, revised
28 pages, revised
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4ee18149f01835a46a59dbeaf8295fe5
http://arxiv.org/abs/1801.08047
http://arxiv.org/abs/1801.08047
Let $\Sigma_{g,p}$ be the genus--$g$ oriented surface with $p$ punctures, with either $g>0$ or $p>3$. We show that $MCG(\Sigma_{g,p})/DT$ is acylindrically hyperbolic where $DT$ is the normal subgroup of the mapping class group $MCG(\Sigma_{g,p})$ ge
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a03be094ecdf357f83e44e2f2758048b