Zobrazeno 1 - 10
of 31
pro vyhledávání: '"François, Nicoleau"'
Autor:
Bernard, Helffer, François, Nicoleau
Inspired by a paper by T. Chakradhar, K. Gittins, G. Habib and N. Peyerimhoff, we analyze their conjecture that the ground state energy of the magnetic Dirichlet-to-Neumann operator on the disk tends to $+\infty$ as the magnetic field tends to $+\inf
Externí odkaz:
http://arxiv.org/abs/2411.15522
Publikováno v:
Forum of Mathematics, Sigma, Vol 8 (2020)
We show that there is nonuniqueness for the Calderón problem with partial data for Riemannian metrics with Hölder continuous coefficients in dimension greater than or equal to three. We provide simple counterexamples in the case of cylindrical Riem
Externí odkaz:
https://doaj.org/article/dd20bd919b734980a5a9d50e3f762787
Publikováno v:
The Journal of Geometric Analysis
The Journal of Geometric Analysis, Springer, In press
The Journal of Geometric Analysis, Springer, In press
In this paper, we study the amount of information contained in the Steklov spectrum of some compact manifolds with connected boundary equipped with a warped product metric. Examples of such manifolds can be thought of as deformed balls in $${\mathbb
Publikováno v:
Annales de l'Institut Fourier
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2019, Volume 69 (n°1), pp.119-170
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2019, Volume 69 (n°1), pp.119-170
International audience; In this paper, we give some simple counterexamples to uniqueness for the Calderon problem on Riemannian manifolds with boundary when the Dirichlet and Neumann data are measured on disjoint sets of the boundary. We provide coun
Publikováno v:
Annales mathématiques du Québec
Annales mathématiques du Québec, Springer, In press
Annales mathématiques du Québec, Springer, In press
International audience; This paper is devoted to the analysis of Steklov eigenvalues and Steklov eigenfunctions on a class of warped product Riemannian manifolds $(M,g)$ whose boundary $\partial M$ consists in two distinct connected components $\Gamm
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1440bb0b9383698c273a28582a52a24b
http://arxiv.org/abs/2103.13889
http://arxiv.org/abs/2103.13889
Publikováno v:
Journal of Spectral Theory
Journal of Spectral Theory, European Mathematical Society, In press
Journal of Spectral Theory, European Mathematical Society, In press
Conformally St{\"a}ckel manifolds can be characterized as the class of n-dimensional pseudo-Riemannian manifolds (M, G) on which the Hamilton-Jacobi equation G($\nabla$u, $\nabla$u) = 0 for null geodesics and the Laplace equation --$\Delta$ G $\psi$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fbaf7985780a34ef312d9eedd9470a82
https://hal.archives-ouvertes.fr/hal-02277206/file/CalderonStackel-September03.pdf
https://hal.archives-ouvertes.fr/hal-02277206/file/CalderonStackel-September03.pdf
Publikováno v:
Forum of Mathematics, Sigma. 8
We show that there is nonuniqueness for the Calderón problem with partial data for Riemannian metrics with Hölder continuous coefficients in dimension greater than or equal to three. We provide simple counterexamples in the case of cylindrical Riem
Publikováno v:
Journal of Non-Newtonian Fluid Mechanics
Journal of Non-Newtonian Fluid Mechanics, Elsevier, 2020, 285, ⟨10.1016/j.jnnfm.2020.104392⟩
Journal of Non-Newtonian Fluid Mechanics, Elsevier, 2020, 285, ⟨10.1016/j.jnnfm.2020.104392⟩
International audience; This work deals with the zero shear rate (maximum velocity) position parameter λ of a steady laminar axial annular flow of power-law fluids especially polymeric ones. λ is involved in the shear rate, velocity profile and the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0c1ec9759ac6eace862627bd467391a3
https://hal.archives-ouvertes.fr/hal-02942762
https://hal.archives-ouvertes.fr/hal-02942762
Autor:
François Nicoleau, Jérémy Faupin
Publikováno v:
Journal of Functional Analysis
Journal of Functional Analysis, Elsevier, 2019, Volume 277 (Issue 9), pp.3062-3097. ⟨10.1016/j.jfa.2019.06.010⟩
Journal of Functional Analysis, Elsevier, 2019, Volume 277 (Issue 9), pp.3062-3097. ⟨10.1016/j.jfa.2019.06.010⟩
We consider a quantum system S interacting with another system S ′ and susceptible of being absorbed by S ′ . The effective, dissipative dynamics of S is supposed to be generated by an abstract pseudo-Hamiltonian of the form H = H 0 + V − i C
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dcbf7bfef7a4927fd9ba99aba397f319
https://hal.archives-ouvertes.fr/hal-01862269/file/dissipativematrices27-08.pdf
https://hal.archives-ouvertes.fr/hal-01862269/file/dissipativematrices27-08.pdf
Publikováno v:
Annales Henri Poincare
Annales Henri Poincare, 2019, pp.859-887
Annales Henri Poincare, 2019, pp.859-887
We show that there is generically non-uniqueness for the anisotropic Calder\'on problem at fixed frequency when the Dirichlet and Neumann data are measured on disjoint sets of the boundary of a given domain. More precisely, we first show that given a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d0387eb7b90859715e0dbed078ebe3c3
https://hal.archives-ouvertes.fr/hal-01450001
https://hal.archives-ouvertes.fr/hal-01450001