Zobrazeno 1 - 10
of 12 295
pro vyhledávání: '"Frailty models"'
The Yang and Prentice (YP) regression models have garnered interest from the scientific community due to their ability to analyze data whose survival curves exhibit intersection. These models include proportional hazards (PH) and proportional odds (P
Externí odkaz:
http://arxiv.org/abs/2403.07650
This paper compares six different parameter estimation methods for shared frailty models via a series of simulation studies. A shared frailty model is a survival model that incorporates a random effect term, where the frailties are common or shared a
Externí odkaz:
http://arxiv.org/abs/2311.11543
Publikováno v:
Stats, Vol 7, Iss 3, Pp 1066-1083 (2024)
Heart failure is a major global health concern, especially in Ethiopia. Numerous studies have analyzed heart failure data to inform decision-making, but these often struggle with limitations to accurately capture death dynamics and account for within
Externí odkaz:
https://doaj.org/article/de0b1389e34f4370bfe508e3bd21db6d
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
For prediction of clustered time-to-event data, we propose a new deep neural network based gamma frailty model (DNN-FM). An advantage of the proposed model is that the joint maximization of the new h-likelihood provides maximum likelihood estimators
Externí odkaz:
http://arxiv.org/abs/2307.06581
Autor:
Gobena, Woldemariam Erkalo1 (AUTHOR) woldenegniko@gmail.com, Gezimu, Wubishet2 (AUTHOR), Mekebo, Gizachew Gobebo3 (AUTHOR), Wotale, Teramaj Wongel4 (AUTHOR), Lelisho, Mesfin Esayas5 (AUTHOR)
Publikováno v:
PLoS ONE. 5/17/2024, Vol. 19 Issue 5, p1-12. 12p.
Residual diagnostic methods play a critical role in assessing model assumptions and detecting outliers in statistical modelling. In the context of survival models with censored observations, Li et al. (2021) introduced the Z-residual, which follows a
Externí odkaz:
http://arxiv.org/abs/2303.09616