Zobrazeno 1 - 10
of 1 451
pro vyhledávání: '"Fractional Poisson process"'
Autor:
Bapat, Sudeep R., Maheshwari, Aditya
Modelling wildfire events has been studied in the literature using the Poisson process, which essentially assumes the independence of wildfire events. In this paper, we use the fractional Poisson process to model the wildfire occurrences in Californi
Externí odkaz:
http://arxiv.org/abs/2411.13995
Autor:
Bansard-Tresse, Dylan
We study the process of suitably normalized successive return times to rare events in the setting of infinite-measure preserving dynamical systems. Specifically, we consider small neighborhoods of points whose measure tends to zero. We obtain two typ
Externí odkaz:
http://arxiv.org/abs/2411.19337
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
J. Appl. Probab. 61 (2024) 1485-1501
In this paper, we introduce a bivariate tempered space-fractional Poisson process (BTSFPP) by time-changing the bivariate Poisson process with an independent tempered $\alpha$-stable subordinator. We study its distributional properties and its connec
Externí odkaz:
http://arxiv.org/abs/2309.10566
Autor:
Michelitsch, Thomas M. a, ⁎, Riascos, Alejandro P. b
Publikováno v:
In Physica A: Statistical Mechanics and its Applications 1 May 2020 545
Publikováno v:
In: Dzielinski, A., Sierociuk, D., Ostalczyk, P. (eds) ICFDA 2021. Lecture Notes in Networks and Systems, vol 452. Springer, Cham. (2022)
In recent years a huge interdisciplinary field has emerged which is devoted to the complex dynamics of anomalous transport with long-time memory and non-markovian features. It was found that the framework of fractional calculus and its generalization
Externí odkaz:
http://arxiv.org/abs/2105.12171
Autor:
Kataria, K. K., Khandakar, M.
Publikováno v:
ALEA. Latin American Journal of Probability and Mathematical Statistics 18(2) (2021) 1241-1265
In this paper, we introduce and study a convoluted version of the time fractional Poisson process by taking the discrete convolution with respect to space variable in the system of fractional differential equations that governs its state probabilitie
Externí odkaz:
http://arxiv.org/abs/2005.11167
A non-Markovian counting process, the `generalized fractional Poisson process' (GFPP) introduced by Cahoy and Polito in 2013 is analyzed. The GFPP contains two index parameters $0<\beta\leq 1$, $\alpha >0$ and a time scale parameter. Generalizations
Externí odkaz:
http://arxiv.org/abs/1907.03830
Publikováno v:
Fract. Calc. Appl. Anal., Vol. 23, No 3 (2020), pp. 656-693
We survey the 'generalized fractional Poisson process' (GFPP). The GFPP is a renewal process generalizing Laskin's fractional Poisson counting process and was first introduced by Cahoy and Polito. The GFPP contains two index parameters with admissibl
Externí odkaz:
http://arxiv.org/abs/1906.09704