Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Frédéric Poupaud"'
Autor:
Frédéric Poupaud, Thierry Goudon
Publikováno v:
Bulletin des Sciences Mathématiques. 131:72-88
We are interested in the behavior with respect to the small parameter ϵ > 0 of solutions ρ ϵ of the conservative transport(-diffusion) equation ∂ t ρ ϵ + ∇ x ( ρ ϵ u ϵ ) = η Δ x ρ ϵ , with η ⩾ 0 , driven by a large random velocity
Publikováno v:
Journal of Statistical Physics. 122:417-436
In this paper the transport of quantum particles in time-dependent random media is studied. In the white noise limit, a quantum model for collisions is obtained. At the level of Wigner equation, this limit is described by a linear Wigner-Boltzmann eq
Autor:
Thierry Goudon, Frédéric Poupaud
Publikováno v:
SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2005, 36 n°3, pp.856--881 (electronic)
SIAM Journal on Mathematical Analysis, 2005, 36 n°3, pp.856--881 (electronic)
SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2005, 36 n°3, pp.856--881 (electronic)
SIAM Journal on Mathematical Analysis, 2005, 36 n°3, pp.856--881 (electronic)
We are interested, with respect to the small parameter $\epsilon$, in the behavior of solutions $\rho^\epsilon$ of the conservative advection-diffusion equation $\partial_t\rho^\epsilon + \nabla_x\cdot(\rho^\epsilon u^\epsilon)=\eta\Delta_x\rho^\epsi
Autor:
Alexis F. Vasseur, Frédéric Poupaud
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 82(6):711-748
We study in this article the transport of particles in time-dependent random media, in the so-called weak coupling limit. We show the convergence of a Liouville equation to a Fokker–Planck equation. We also obtain the semi-classical limit of Schrod
Publikováno v:
Quarterly of Applied Mathematics. 61:161-192
In this paper, we rigorously derive a diffusion model for semiconductor superlattices, starting from a kinetic description of electron transport at the microscopic scale. Electron transport in the superlattice is modelled by a collisionless Boltzmann
Publikováno v:
Mathematical Models and Methods in Applied Sciences. 12:1599-1615
In this paper we give a criterion to discriminate the entropy solution to quasi-linear equations of first order among weak solutions. This uniqueness statement is a generalization of Oleinik's criterion, which makes reference to the measure of the in
Publikováno v:
SIAM Journal on Applied Mathematics. 62:1488-1500
We investigate the connection between two classical models for the study of phase transition phenomena, the Becker--Doring equations, and the Lifshitz--Slyozov system. More precisely, we introduce a scaling parameter and show that the solution to the
Autor:
Frédéric Poupaud
Publikováno v:
ESAIM: Proceedings. 11:141-152
La physique des semiconducteurs est un domaine tres riche en problemes de modelisation et de mathematiques. Selon l´echelle consideree : microscopique, mesoscopique ou macroscopique, la modelisation du transport des charges requiert une description
Publikováno v:
Archive for Rational Mechanics and Analysis. 158:29-59
This paper is concerned with the analysis of the stability of the Vlasov-PoissonFokker-Planck system with respect to the physical constants. If the scaled thermal mean free path converges to zero and the scaled thermal velocity remains constant, then
Autor:
Frédéric Poupaud, Thierry Goudon
Publikováno v:
Communications in Partial Differential Equations. 26:537-569
This work is devoted to the approximation by the diffusion of kinetic equations. The approximation is justified by homogenization and in the limit of vanishing mean free path. Our analysis includes...