Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Frédéric Koriche"'
Autor:
Gilles Audemard, Steve Bellart, Louenas Bounia, Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis
Publikováno v:
HAL
Random forests have long been considered as powerful model ensembles in machine learning. By training multiple decision trees, whose diversity is fostered through data and feature subsampling, the resulting random forest can lead to more stable and r
Publikováno v:
Machine Learning. 111:2323-2348
Autor:
Gilles Audemard, Steve Bellart, Louenas Bounia, Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis
Publikováno v:
Data and Knowledge Engineering
Data and Knowledge Engineering, 2022, 142, pp.102088. ⟨10.1016/j.datak.2022.102088⟩
Data and Knowledge Engineering, 2022, 142, pp.102088. ⟨10.1016/j.datak.2022.102088⟩
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::652490c5e57d8aaa2165bf5f3ffae295
https://hal.science/hal-03950467
https://hal.science/hal-03950467
Autor:
Gilles Audemard, Steve Bellart, Louenas Bounia, Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis
Publikováno v:
HAL
Les forêts aléatoires constituent un modèle d'apprentissage automatique efficace, ce qui explique qu'elles soient encore massivement utilisées aujourd'hui. S'il est assez facile de comprendre le fonctionnement d'un arbre de décision, il est beau
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::3f5cf6a1d70a5979e4e936d801adcb6a
https://hal.archives-ouvertes.fr/hal-03699537
https://hal.archives-ouvertes.fr/hal-03699537
Autor:
Louenas Bounia, Jean-Marie Lagniez, Pierre Marquis, Steve Bellart, Frédéric Koriche, Gilles Audemard
Publikováno v:
18th International Conference on Principles of Knowledge Representation and Reasoning {KR-2021}
18th International Conference on Principles of Knowledge Representation and Reasoning, Nov 2020, Hanoii, France. pp.74-86, ⟨10.24963/kr.2021/8⟩
KR
18th International Conference on Principles of Knowledge Representation and Reasoning, Nov 2021, Hanoii, France. pp.74-86, ⟨10.24963/kr.2021/8⟩
18th International Conference on Principles of Knowledge Representation and Reasoning, Nov 2020, Hanoii, France. pp.74-86, ⟨10.24963/kr.2021/8⟩
KR
18th International Conference on Principles of Knowledge Representation and Reasoning, Nov 2021, Hanoii, France. pp.74-86, ⟨10.24963/kr.2021/8⟩
In this paper, we investigate the computational intelligibility of Boolean classifiers, characterized by their ability to answer XAI queries in polynomial time. The classifiers under consideration are decision trees, DNF formulae, decision lists, dec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6065a7b780061c0abd1cb88a35eed3c9
https://hal.archives-ouvertes.fr/hal-03500007
https://hal.archives-ouvertes.fr/hal-03500007
Publikováno v:
17th International Conference on Principles of Knowledge Representation and Reasoning (KR'20)
17th International Conference on Principles of Knowledge Representation and Reasoning (KR'20), 2020, Rhodes, Greece
KR
HAL
17th International Conference on Principles of Knowledge Representation and Reasoning (KR'20), 2020, Rhodes, Greece
KR
HAL
One of the key purposes of eXplainable AI (XAI) is to develop techniques for understanding predictions made by Machine Learning (ML) models and for assessing how much reliable they are. Several encoding schemas have recently been pointed out, showing
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5bb6f37ba76754fcf7fe2c9e9dc21034
https://hal-univ-artois.archives-ouvertes.fr/hal-03299475
https://hal-univ-artois.archives-ouvertes.fr/hal-03299475
Publikováno v:
A Guided Tour of Artificial Intelligence Research ISBN: 9783030061630
Statistical computational learning is the branch of Machine Learning that defines and analyzes the performance of learning algorithms using two metrics: sample complexity and runtime complexity. This chapter is a short introduction to this important
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1b6251c93fb838d9c8b89d25ca2725ef
https://doi.org/10.1007/978-3-030-06164-7_11
https://doi.org/10.1007/978-3-030-06164-7_11
Publikováno v:
Artificial Intelligence
Artificial Intelligence, Elsevier, 2017, 244, pp.315-342. ⟨10.1016/j.artint.2015.08.001⟩
Artificial Intelligence, Elsevier, 2017, 244, pp.315-342. ⟨10.1016/j.artint.2015.08.001⟩
International audience; Constraint programming is used to model and solve complex combina- torial problems. The modeling task requires some expertise in constraint programming. This requirement is a bottleneck to the broader uptake of constraint tech
Publikováno v:
15es Journées Francophones de Programmation par Contraintes – JFPC 2019
15es Journées Francophones de Programmation par Contraintes – JFPC 2019, Jun 2019, Albi, France
HAL
15es Journées Francophones de Programmation par Contraintes – JFPC 2019, Jun 2019, Albi, France
HAL
International audience; L'automatisation de la configuration des solveurs a reçu une grande attention ces dernières années notam-ment pour la capacité à ajuster ses différents paramètres selon l'instance à résoudre. De plus, cette automatisa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::ec5a983c4767c4a8ce2b1b67124ba2a8
https://hal.archives-ouvertes.fr/hal-02414288/document
https://hal.archives-ouvertes.fr/hal-02414288/document
Publikováno v:
Machine Learning and Knowledge Discovery in Databases ISBN: 9783030109271
ECML/PKDD (2)
Machine Learning and Knowledge Discovery in Databases-European Conference (ECML-PKDD)
Machine Learning and Knowledge Discovery in Databases-European Conference (ECML-PKDD), 2018, Unknown, Ireland
ECML/PKDD (2)
Machine Learning and Knowledge Discovery in Databases-European Conference (ECML-PKDD)
Machine Learning and Knowledge Discovery in Databases-European Conference (ECML-PKDD), 2018, Unknown, Ireland
The overall goal of online feature selection is to iteratively select, from high-dimensional streaming data, a small, “budgeted” number of features for constructing accurate predictors. In this paper, we address the online feature selection probl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ba115cd5d7e644b6d1373d7a24d86e7f
https://doi.org/10.1007/978-3-030-10928-8_26
https://doi.org/10.1007/978-3-030-10928-8_26