Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Frédéric Déglise"'
Autor:
Frédéric Déglise, Jean Fasel
Publikováno v:
Journal of the Institute of Mathematics of Jussieu
Journal of the Institute of Mathematics of Jussieu, Cambridge University Press (CUP), 2021, pp.1-51. ⟨10.1017/S1474748021000281⟩
Journal of the Institute of Mathematics of Jussieu, 2021, pp.1-51. ⟨10.1017/S1474748021000281⟩
Journal of the Institute of Mathematics of Jussieu, Cambridge University Press (CUP), 2021, pp.1-51. ⟨10.1017/S1474748021000281⟩
Journal of the Institute of Mathematics of Jussieu, 2021, pp.1-51. ⟨10.1017/S1474748021000281⟩
The main purpose of this article is to define a quadratic analog of the Chern character, the so-called Borel character, which identifies rational higher Grothendieck-Witt groups with a sum of rational MW-motivic cohomologies and rational motivic coho
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::65a8705b790205e121b7d462f2d85c8e
https://hal-ens-lyon.archives-ouvertes.fr/ensl-03466895
https://hal-ens-lyon.archives-ouvertes.fr/ensl-03466895
Publikováno v:
Journal de l'École polytechnique — Mathématiques
Journal de l'École polytechnique — Mathématiques, 2021, ⟨10.5802/jep.153⟩
Journal de l’École polytechnique — Mathématiques
HAL
Journal de l'École polytechnique — Mathématiques, École polytechnique, 2021, ⟨10.5802/jep.153⟩
Journal de l'École polytechnique — Mathématiques, 2021, ⟨10.5802/jep.153⟩
Journal de l’École polytechnique — Mathématiques
HAL
Journal de l'École polytechnique — Mathématiques, École polytechnique, 2021, ⟨10.5802/jep.153⟩
We study the structure of the rational motivic stable homotopy category over general base schemes. Our first class of results concerns the six operations: we prove absolute purity, stability of constructible objects, and Grothendieck-Verdier duality
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e1a58cde5d3fb6ba09641a73a138548e
https://hal.science/hal-03014174
https://hal.science/hal-03014174
Publikováno v:
HAL
We develop the algebraic formalism of the formal ternary laws of C. Walter and we compare them to Buchstaber's 2-valued formal group laws. We also compute the "elementary" formal ternary laws (after inverting 2) using a computer program available onl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::15d09e23d44a4b06f3eff2efae449ad4
https://hal.archives-ouvertes.fr/hal-03470551
https://hal.archives-ouvertes.fr/hal-03470551
Publikováno v:
Motivic Homotopy Theory and Refined Enumerative Geometry
Motivic Homotopy Theory and Refined Enumerative Geometry, 745, pp.21-68, 2020, 978-1-4704-4898-1. ⟨10.1090/conm/745/15021⟩
Motivic homotopy theory and refined enumerative geometry (co-edited with Federico Binda, Marc Levine,and Oliver Röndigs)
Motivic Homotopy Theory and Refined Enumerative Geometry, Federico Binda, Marc Levine, Manh Toan, Oliver Röndigs, May 2018, Essen, Germany
Motivic Homotopy Theory and Refined Enumerative Geometry, 745, pp.21-68, 2020, 978-1-4704-4898-1. ⟨10.1090/conm/745/15021⟩
Motivic homotopy theory and refined enumerative geometry (co-edited with Federico Binda, Marc Levine,and Oliver Röndigs)
Motivic Homotopy Theory and Refined Enumerative Geometry, Federico Binda, Marc Levine, Manh Toan, Oliver Röndigs, May 2018, Essen, Germany
In this work, we build a spectral sequence in motivic homotopy that is analogous to both the Serre spectral sequence in algebraic topology and the Leray spectral sequence in algebraic geometry. Here, we focus on laying the foundations necessary to bu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::338be897fe8193583f46775fecedae73
https://hal-univ-bourgogne.archives-ouvertes.fr/hal-03108523
https://hal-univ-bourgogne.archives-ouvertes.fr/hal-03108523
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030332419
Section 12 is a recollection on the basic results of stable homotopy theory of schemes, after Morel and Voevodsky. In particular, we recall the theory of orientations in a motivic cohomology theory. Section 13 is a recollection of the fundamental res
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ef7c227d0ea3af0ec7b39b2450eaf0dd
https://doi.org/10.1007/978-3-030-33242-6_4
https://doi.org/10.1007/978-3-030-33242-6_4
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030332419
In Section 5, we introduce methods from classical homological algebra (i.e. using mostly the language of derived categories of abelian categories and their Verdier quotients) to construct the main examples of premotivic categories of interest in this
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::63f8a774a939e43ddd594a8f53eaf05e
https://doi.org/10.1007/978-3-030-33242-6_2
https://doi.org/10.1007/978-3-030-33242-6_2
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030332419
This part is based on Suslin and Voevodsky’s theory of relative cycles that we develop in categorical terms, in the style of EGA. The climax of the theory is obtained in the study of a pullback operation for suitable relative cycles which is the in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1fb820d4e05f3d51e3c6b1ef44f44949
https://doi.org/10.1007/978-3-030-33242-6_3
https://doi.org/10.1007/978-3-030-33242-6_3
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030332419
In Section 1, we introduce the basic language used in this book, the so-called premotivic categories and their functoriality. This is an extension of the classical notion of fibered categories. They appear with different categorical structures. In Se
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a68566879232a2ded018be7dcaaeb832
https://doi.org/10.1007/978-3-030-33242-6_1
https://doi.org/10.1007/978-3-030-33242-6_1
The primary aim of this monograph is to achieve part of Beilinson's program on mixed motives using Voevodsky's theories of A1-homotopy and motivic complexes. Historically, this book is the first to give a complete construction of a triangulated categ
Autor:
Frédéric Déglise
Publikováno v:
Documenta Mathematica
Documenta Mathematica, Universität Bielefeld, 2018, 23, pp.997-1076. ⟨10.25537/dm.2018v23.997-1076⟩
Documenta Mathematica, Universität Bielefeld, 2018, 23, pp.997-1076. ⟨10.25537/dm.2018v23.997-1076⟩
The purpose of this work is to study the notion of bivariant theory introduced by Fulton and MacPherson in the context of motivic stable homotopy theory, and more generally in the broader framework of the Grothendieck six functors formalism. We intro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7b4f794614cd42bae4e6cfba569ed393
https://hal-univ-bourgogne.archives-ouvertes.fr/hal-02314874
https://hal-univ-bourgogne.archives-ouvertes.fr/hal-02314874