Zobrazeno 1 - 10
of 75
pro vyhledávání: '"Frédéric Champagnat"'
Autor:
Alice Fontbonne, Pauline Trouvé-Peloux, Frédéric Champagnat, Gabriel Jobert, Guillaume Druart
Publikováno v:
Sensors, Vol 23, Iss 23, p 9462 (2023)
Many works in the state of the art are interested in the increase of the camera depth of field (DoF) via the joint optimization of an optical component (typically a phase mask) and a digital processing step with an infinite deconvolution support or a
Externí odkaz:
https://doaj.org/article/7078eaee42c74bdebb55fa7b871e8014
Publikováno v:
Applied optics. 61(29)
We present a novel, to the best of our knowledge, patch-based approach for depth regression from defocus blur. Most state-of-the-art methods for depth from defocus (DFD) use a patch classification approach among a set of potential defocus blurs relat
Publikováno v:
Unconventional Optical Imaging III.
Publikováno v:
Applied optics. 60(31)
In this paper, we propose what we believe is a new monocular depth estimation algorithm based on local estimation of defocus blur, an approach referred to as depth from defocus (DFD). Using a limited set of calibration images, we directly learn image
Publikováno v:
14th International Symposium on Particle Image Velocimetry. 1
This paper aims at analysing the behaviour of particle localisation error in 3D Lagrangian Particle Tracking (LPT) techniques, with a particular emphasis on general properties, independent of a specific algorithm. Based on the hypothesis that in LPT
Autor:
Andrea Sciacchitano, Ivan Mary, Benjamin Leclaire, Philippe Cornic, Cédric Liauzun, Stéphanie Péron, Frédéric Champagnat, Andreas Schröder
Publikováno v:
ISPIV 2021
ISPIV 2021, Aug 2021, CHICAGO (VIRTUEL), United States
ISPIV 2021, Aug 2021, CHICAGO (VIRTUEL), United States
International audience; This communication describes how datasets for the 1st challenge on Lagrangian Particle Tracking (LPT) and Data Assimilation (DA), held in 2020 and organized within the UE-funded H2020 project HOMER, have been generated. The ph
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::865340a6b9c533cb3d7ca381a92b4af5
https://hal.archives-ouvertes.fr/hal-03368421/document
https://hal.archives-ouvertes.fr/hal-03368421/document
Publikováno v:
MVA 2021
MVA 2021, Jul 2021, VIRTUEL, Japan
HAL
MVA
MVA 2021, Jul 2021, VIRTUEL, Japan
HAL
MVA
Good quality reconstruction and comprehension of a scene rely on 3D estimation methods. The 3D information was usually obtained from images by stereo-photogrammetry, but deep learning has recently provided us with excellent results for monocular dept
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5bd4d9fff49b92ab9ef7788f2f56fdac
https://hal.archives-ouvertes.fr/hal-03365994/document
https://hal.archives-ouvertes.fr/hal-03365994/document
Autor:
Frédéric Champagnat, Cédric Herzet
Publikováno v:
EUSIPCO 2020-28th European Signal Processing Conference
EUSIPCO 2020-28th European Signal Processing Conference, Jan 2021, Amsterdam, Netherlands. pp.2011-2015, ⟨10.23919/Eusipco47968.2020.9287460⟩
EUSIPCO
EUSIPCO 2020-28th European Signal Processing Conference, Jan 2021, Amsterdam, Netherlands. pp.2011-2015, ⟨10.23919/Eusipco47968.2020.9287460⟩
EUSIPCO
In this paper, we address the problem of approximating the atoms of a parametric dictionary ${\mathcal{A}} = \left\{ {a\left(\theta\right):\theta \in \Theta } \right\}$, commonly encountered in the context of sparse representations in "continuous" di
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ba7ec6655338b36ad46ee6dbc6668f22
https://hal.inria.fr/hal-03070383/document
https://hal.inria.fr/hal-03070383/document
Publikováno v:
Journal of the Optical Society of America. A Optics, Image Science, and Vision
Journal of the Optical Society of America. A Optics, Image Science, and Vision, Optical Society of America, 2021, 38 (10), pp.1489. ⟨10.1364/josaa.424621⟩
Journal of the Optical Society of America. A Optics, Image Science, and Vision, 2021, 38 (10), pp.1489. ⟨10.1364/josaa.424621⟩
Journal of the Optical Society of America. A Optics, Image Science, and Vision, Optical Society of America, 2021, 38 (10), pp.1489. ⟨10.1364/josaa.424621⟩
Journal of the Optical Society of America. A Optics, Image Science, and Vision, 2021, 38 (10), pp.1489. ⟨10.1364/josaa.424621⟩
International audience; In this paper we present a generic performance model able to evaluate the accuracy of depth estimation using depth from defocus. This model only requires the sensor PSF at a given depth to evaluate the theoretical accuracy of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8957732221eb51a4d7b47390fb17ab0f
https://hal.archives-ouvertes.fr/hal-03378595
https://hal.archives-ouvertes.fr/hal-03378595
Autor:
Rémy Leroy, Bertrand Le Saux, Marcela Pinheiro de Carvalho, Pauline Trouvé-Peloux, Frédéric Champagnat
Publikováno v:
RFIAP 2020
RFIAP 2020, Jun 2020, VANNES, France
HAL
RFIAP 2020, Jun 2020, VANNES, France
HAL
International audience; Estimer la géométrie 3D d’une scène est crucial pour la reconstruction et la compréhension de celle-ci. L’information 3D est obtenue traditionnellement par stéréovision, et plus récemment par apprentissage profond a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::53ac3842a42076c9c726f19c61729e7e
https://hal.archives-ouvertes.fr/hal-02906388/file/DTIS20137.1595258673.pdf
https://hal.archives-ouvertes.fr/hal-02906388/file/DTIS20137.1595258673.pdf