Zobrazeno 1 - 10
of 731
pro vyhledávání: '"Fox–Wright function"'
Autor:
Khaled Mehrez, Abdulaziz Alenazi
Publikováno v:
AIMS Mathematics, Vol 9, Iss 7, Pp 19070-19088 (2024)
Motivated by the recent investigations of several authors, the main aim of this article is to derive several functional inequalities for a class of functions related to the incomplete Fox-Wright functions that were introduced and studied recently. Mo
Externí odkaz:
https://doaj.org/article/69c6cffce67241a4ad4705c8b09c3209
Autor:
Paneva-Konovska, Jordanka1 (AUTHOR) jpanevakonovska@gmail.com, Kiryakova, Virginia1 (AUTHOR) virginia@diogenes.bg
Publikováno v:
Mathematics (2227-7390). Jun2024, Vol. 12 Issue 12, p1918. 25p.
Autor:
Kaurangini, M. L.1 kaurangini@kustwudil.edu.ng, Chaudhary, M. P.2 dr.m.p.chaudhary@gmail.com, Abubakar, U. M.1 uabubakar@kustwudil.edu.ng, Kiymaz, I. O.3 iokiymaz@ahievran.edu.tr, Ata, E.3 enesata.tr@gmail.com
Publikováno v:
Journal of Ramanujan Society of Mathematics & Mathematical Sciences. 2023, Vol. 11 Issue 1, p17-41. 25p.
Autor:
Tassaddiq, Asifa1 (AUTHOR) a.tassaddiq@mu.edu.sa, Srivastava, Rekha2 (AUTHOR) rekhasrivastava@uvic.ca, Kasmani, Ruhaila Md3 (AUTHOR) ruhaila@um.edu.my, Almutairi, Dalal Khalid4 (AUTHOR) dk.almutairi@mu.edu.sa
Publikováno v:
Mathematics (2227-7390). Aug2023, Vol. 11 Issue 15, p3372. 20p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Mathematics, Vol 12, Iss 12, p 1918 (2024)
In this paper, we consider and study in detail the generalized Fox–Wright function Ψ˜qp introduced in our recent work as an extension of the Fox–Wright function Ψqp. This special function can be seen as an important case of the so-called I-fun
Externí odkaz:
https://doaj.org/article/3f64d42b17c84edbad860659511f690d
Publikováno v:
Mathematics, Vol 11, Iss 15, p 3372 (2023)
A review of the literature demonstrates that the Fox–Wright function is not only a mathematical puzzle, but its role is naturally to represent basic physical phenomena. Motivated by this fact, we studied a new representation of this function in ter
Externí odkaz:
https://doaj.org/article/2622d6aa8eb34fd688cd93ff9a4721a3
Autor:
Karp, Dmitrii, Prilepkina, Elena
The Fox-Wright function is a further extension of the generalized hypergeometric function obtained by introducing arbitrary positive scaling factors into the arguments of the gamma functions in the summand. Its importance comes mostly from its role i
Externí odkaz:
http://arxiv.org/abs/1907.04597
Autor:
Ata Enes, Kıymaz İ. Onur
Publikováno v:
Applied Mathematics and Nonlinear Sciences, Vol 5, Iss 1, Pp 147-162 (2020)
In this study, motivated by the frequent use of Fox-Wright function in the theory of special functions, we first introduced new generalizations of gamma and beta functions with the help of Fox-Wright function. Then by using these functions, we define
Externí odkaz:
https://doaj.org/article/35f49840fe7a466b9c7a0c7e4829e4ec
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, vol. 20 no. 2, Combinatorics (October 22, 2018) dmtcs:4476
By means of inversion techniques and several known hypergeometric series identities, summation formulas for Fox-Wright function are explored. They give some new hypergeometric series identities when the parameters are specified.
Externí odkaz:
http://arxiv.org/abs/1804.11061