Zobrazeno 1 - 10
of 98 398
pro vyhledávání: '"Fourier coefficients"'
Autor:
Assing, Edgar
We prove new bounds for the Fourier coefficients of Jacobi forms using a method of Iwaniec. In view of the Fourier-Jacobi expansion of degree two Siegel modular forms, we can use these to obtain strong bounds on fundamental Fourier coefficients of Si
Externí odkaz:
http://arxiv.org/abs/2411.00450
Autor:
Limani, Adem
We consider a uniqueness problem concerning the Fourier coefficients of normalized Cauchy transforms. These problems inherently involve proving a simultaneous approximation phenomenon and establishing the existence of cyclic inner functions in certai
Externí odkaz:
http://arxiv.org/abs/2410.19581
Autor:
Lau, Yuk-Kam, Lee, Wonwoong
Let $d(n)$ be the number of divisors of $n$. We investigate the average value of $d(a_f(p))^r$ for $r$ a positive integer and $a_f(p)$ the $p$-th Fourier coefficient of a cuspidal eigenform $f$ having integral Fourier coefficients, where $p$ is a pri
Externí odkaz:
http://arxiv.org/abs/2411.17210
In this paper, we study vanishing of Fourier coefficients of holomorphic $\eta$-quotients. We investigate examples of two different types: the first one involves integral weight CM newforms, while the second one involves half-integral weight $\eta$-q
Externí odkaz:
http://arxiv.org/abs/2411.05941
Autor:
Depouilly, Baptiste
Following Zagier, this work studies the rationality and divisibility of Fourier coefficients of meromorphic Hilbert modular forms associated with real quadratic fields, using theta lifts and weak Maass forms. We establish conditions where these coeff
Externí odkaz:
http://arxiv.org/abs/2411.00701
Autor:
Yu, Yanxue
Let $f$ be a holomorphic or Maass cusp forms for $ \rm SL_2(\mathbb{Z})$ with normalized Fourier coefficients $\lambda_f(n)$ and \bna r_{\ell}(n)=\#\left\{(n_1,\cdots,n_{\ell})\in \mathbb{Z}^2:n_1^2+\cdots+n_{\ell}^2=n\right\}. \ena Let $\chi$ be a p
Externí odkaz:
http://arxiv.org/abs/2410.12305
Autor:
Fuller, Adam H., Karmakar, Pradyut
Let $\Sigma \rightarrow G$ be a twist over a locally compact Hausdorff \'{e}tale groupoid $G$. Given $f$ in the reduced C$^*$-algebra $C_r^*(\Sigma;G)$ with open support $U \subseteq G$ we ask when $f$ lies in the closure of the compactly supported s
Externí odkaz:
http://arxiv.org/abs/2412.05410