Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Foskett, Michael S."'
Autor:
Foskett, Michael S.
This thesis investigates geometric approaches to quantum hydrodynamics (QHD) in order to develop applications in theoretical quantum chemistry. Based upon the momentum map geometric structure of QHD and the associated Lie-Poisson and Euler-Poincar\'e
Externí odkaz:
http://arxiv.org/abs/2009.13601
Autor:
Foskett, Michael S., Tronci, Cesare
Publikováno v:
In "Hamiltonian Systems: Dynamics, Analysis, Applications". Edited by A. Fathi, P. J. Morrison, T. M-Seara, and S. Tabachnikov. Math. Sci. Res. Inst. Pub. 72. Pages 173-214. Cambridge University Press. 2024
We consider a new geometric approach to Madelung's quantum hydrodynamics (QHD) based on the theory of gauge connections. In particular, our treatment comprises a constant curvature thereby endowing QHD with intrinsic non-zero holonomy. In the hydrody
Externí odkaz:
http://arxiv.org/abs/2003.08664
The Hamiltonian action of a Lie group on a symplectic manifold induces a momentum map generalizing Noether's conserved quantity occurring in the case of a symmetry group. Then, when a Hamiltonian function can be written in terms of this momentum map,
Externí odkaz:
http://arxiv.org/abs/1807.01031
Autor:
Foskett, Michael S.1,2 (AUTHOR) m.foskett@surrey.ac.uk, Holm, Darryl D.3 (AUTHOR) d.holm@imperial.ac.uk, Tronci, Cesare1,2 (AUTHOR) c.tronci@surrey.ac.uk
Publikováno v:
Acta Applicandae Mathematicae. Aug2019, Vol. 162 Issue 1, p63-103. 41p.