Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Fosca Al Roumi"'
Publikováno v:
eLife, Vol 12 (2023)
According to the language-of-thought hypothesis, regular sequences are compressed in human memory using recursive loops akin to a mental program that predicts future items. We tested this theory by probing memory for 16-item sequences made of two sou
Externí odkaz:
https://doaj.org/article/53bdef38b1d940da887ae5bc2141b174
Publikováno v:
eLife, Vol 12 (2023)
Successive auditory inputs are rarely independent, their relationships ranging from local transitions between elements to hierarchical and nested representations. In many situations, humans retrieve these dependencies even from limited datasets. Howe
Externí odkaz:
https://doaj.org/article/c65cb6af19334c0db922a916afb35b2d
Publikováno v:
Trends in Cognitive Sciences. 26:751-766
Natural language is often seen as the single factor that explains the cognitive singularity of the human species. Instead, we propose that humans possess multiple internal languages of thought, akin to computer languages, which encode and compress st
According to the language of thought hypothesis, regular sequences are compressed in human working memory using recursive loops akin to a mental program that predicts future items. We tested this theory by probing working memory for 16-item sequences
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e41f98f5d60ff72a5dffc424ea506de7
https://doi.org/10.1101/2022.10.15.512361
https://doi.org/10.1101/2022.10.15.512361
Publikováno v:
Trends in Cognitive Sciences
Trends in Cognitive Sciences, Elsevier, 2019, 23, pp.1058-1070. ⟨10.1016/j.tics.2019.10.002⟩
Trends in Cognitive Sciences, 2019, 23, pp.1058-1070. ⟨10.1016/j.tics.2019.10.002⟩
Trends in Cognitive Sciences, Elsevier, 2019, 23, pp.1058-1070. ⟨10.1016/j.tics.2019.10.002⟩
Trends in Cognitive Sciences, 2019, 23, pp.1058-1070. ⟨10.1016/j.tics.2019.10.002⟩
A central goal in cognitive science is to parse the series of processing stages underlying a cognitive task. A powerful yet simple behavioral method that can resolve this problem is finger trajectory tracking: by continuously tracking the finger posi
Publikováno v:
Neuron
Neuron, 2021, 109, pp.2627-2639. ⟨10.1016/j.neuron.2021.06.009⟩
Neuron, 2021, 109 (16), pp.2627-2639.e4. ⟨10.1016/j.neuron.2021.06.009⟩
Neuron, 2021, 109, pp.2627-2639. ⟨10.1016/j.neuron.2021.06.009⟩
Neuron, 2021, 109 (16), pp.2627-2639.e4. ⟨10.1016/j.neuron.2021.06.009⟩
How does the human brain store sequences of spatial locations? The standard view is that each consecutive item occupies a distinct slot in working memory. Here, we formulate and test the alternative hypothesis that the human brain compresses the whol
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e321e0ffa53c5ac7b9e04445099f6f8a
https://hal.science/hal-03884291/document
https://hal.science/hal-03884291/document
Publikováno v:
Cognition
Cognition, Elsevier, 2019, 185, pp.49-61. ⟨10.1016/j.cognition.2018.11.006⟩
Cognition, 2019, 185, pp.49-61. ⟨10.1016/j.cognition.2018.11.006⟩
Cognition, Elsevier, 2019, 185, pp.49-61. ⟨10.1016/j.cognition.2018.11.006⟩
Cognition, 2019, 185, pp.49-61. ⟨10.1016/j.cognition.2018.11.006⟩
Most artificial grammar tasks require the learning of sequences devoid of meaning. Here, we introduce a learning task that allows studying the acquisition and processing of a mini-language of arithmetic with both syntactic and semantic components. In
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e258c8ab86782b77d3660bea1ac4c58e
https://hal.archives-ouvertes.fr/hal-03486792/document
https://hal.archives-ouvertes.fr/hal-03486792/document
Publikováno v:
Phys.Rev.D
Phys.Rev.D, 2017, 96 (12), pp.123538. 〈10.1103/PhysRevD.96.123538〉
Phys.Rev.D, 2017, 96 (12), pp.123538. ⟨10.1103/PhysRevD.96.123538⟩
Physical Review D
Physical Review D, American Physical Society, 2017, 96 (12), pp.123538. ⟨10.1103/PhysRevD.96.123538⟩
Phys.Rev.D, 2017, 96 (12), pp.123538. 〈10.1103/PhysRevD.96.123538〉
Phys.Rev.D, 2017, 96 (12), pp.123538. ⟨10.1103/PhysRevD.96.123538⟩
Physical Review D
Physical Review D, American Physical Society, 2017, 96 (12), pp.123538. ⟨10.1103/PhysRevD.96.123538⟩
The relativistic generalization of the Newtonian Lagrangian perturbation theory is investigated. In previous works, the perturbation and solution schemes that are generated by the spatially projected gravitoelectric part of the Weyl tensor were given
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5d00b171ad3fa2fc536068324ba9aee7
https://hal.archives-ouvertes.fr/hal-01704711
https://hal.archives-ouvertes.fr/hal-01704711
Autor:
Thomas Buchert, Fosca Al Roumi
Publikováno v:
Marcel Grossmann Meeting MG14-Rome 2015
Marcel Grossmann Meeting MG14-Rome 2015, Jul 2015, Rome, Italy. pp.arXiv:1602.00121
Marcel Grossmann Meeting MG14-Rome 2015, Jul 2015, Rome, Italy. pp.arXiv:1602.00121
In the framework of Lagrangian perturbation theory in general relativity we discuss the possibility to split the Einstein equations, written in terms of spatial Cartan coframes within a 3+1 foliation of spacetime, into gravitoelectric and gravitomagn
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3f710232b8f3fdf46fa156d4a1f7f056
https://hal.archives-ouvertes.fr/hal-01311098
https://hal.archives-ouvertes.fr/hal-01311098
Publikováno v:
Physical Review D
Physical Review D, 2015, 92 (2), pp.023512. ⟨10.1103/PhysRevD.92.023512⟩
Physical Review D, American Physical Society, 2015, 92 (2), pp.023512. ⟨10.1103/PhysRevD.92.023512⟩
Physical Review D, 2015, 92 (2), pp.023512. ⟨10.1103/PhysRevD.92.023512⟩
Physical Review D, American Physical Society, 2015, 92 (2), pp.023512. ⟨10.1103/PhysRevD.92.023512⟩
The relativistic generalization of the Newtonian Lagrangian perturbation theory is investigated. In previous works, the first-order trace solutions that are generated by the spatially projected gravitoelectric part of the Weyl tensor were given toget
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e3973fa45288feacfdaae5a1eef4ed17
https://hal.science/hal-01180380
https://hal.science/hal-01180380