Zobrazeno 1 - 10
of 90
pro vyhledávání: '"Forward-backward parabolic equations"'
Publikováno v:
Electronic Journal of Differential Equations, Vol 2020, Iss 07,, Pp 1-15 (2020)
We study the well-posedness of the generalized viscous Cahn-Hilliard equation with nonlinear source term. Then, we analyze the singular limits when the relaxed terms vanish. In the sense of Young measures, we obtain the measure-valued solution of
Externí odkaz:
https://doaj.org/article/ce7fd70bea904dadb9b87bc8f988c07f
Publikováno v:
Electronic Journal of Differential Equations, Vol 2017, Iss 176,, Pp 1-8 (2017)
We prove the existence of solutions of the viscous Cahn-Hilliard equation in whole domain when the nonlinear term in the second order diffusion grows as $u^q$ for the critical case when $N\geq 3$. Our results improve the ones in [9,12].
Externí odkaz:
https://doaj.org/article/7f2786e9aaae4972b48880011424d5ae
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Fabio Paronetto
In this note we give existence and uniqueness result for some elliptic problems depending on a small parameter and show that their solutions converge, when this parameter goes to zero, to the solution of a mixed type equation, elliptic-parabolic, par
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f773989c9896449170240e6de3ee06bc
https://hdl.handle.net/11577/3327391
https://hdl.handle.net/11577/3327391
Publikováno v:
Journal of differential equations
269 (2020): 6656–6698. doi:10.1016/j.jde.2020.05.007
info:cnr-pdr/source/autori:Bertsch, M.; Smarrazzo, F.; Tesei, A./titolo:On a class of forward-backward parabolic equations: Formation of singularities/doi:10.1016%2Fj.jde.2020.05.007/rivista:Journal of differential equations (Print)/anno:2020/pagina_da:6656/pagina_a:6698/intervallo_pagine:6656–6698/volume:269
269 (2020): 6656–6698. doi:10.1016/j.jde.2020.05.007
info:cnr-pdr/source/autori:Bertsch, M.; Smarrazzo, F.; Tesei, A./titolo:On a class of forward-backward parabolic equations: Formation of singularities/doi:10.1016%2Fj.jde.2020.05.007/rivista:Journal of differential equations (Print)/anno:2020/pagina_da:6656/pagina_a:6698/intervallo_pagine:6656–6698/volume:269
We study the formation of singularities for the problem { u t = [ φ ( u ) ] x x + e [ ψ ( u ) ] t x x in Ω × ( 0 , T ) φ ( u ) + e [ ψ ( u ) ] t = 0 in ∂ Ω × ( 0 , T ) u = u 0 ≥ 0 in Ω × { 0 } , where ϵ and T are positive constants, Ω
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c4652a3dfdcbf0c5b87d004ac60eb1ee
Autor:
Fabio Paronetto
Publikováno v:
Applicable Analysis. 98:1042-1051
In this note we deal with a problem regarding forward–backward parabolic equations like r(x)ut-uxx=0 with r which changes sign. It is natural to have the continuity of the function t↦∫u2(x,t)r(x)dx . Here we show that, under very mild assumptio
Publikováno v:
SIAM journal on mathematical analysis
51 (2019): 374–402. doi:10.1137/18M1203821
info:cnr-pdr/source/autori:Bertsch M.; Giacomelli L.; Tesei A./titolo:Measure-valued solutions to a nonlinear fourth-order regularization of forward-backward parabolic equations/doi:10.1137%2F18M1203821/rivista:SIAM journal on mathematical analysis (Print)/anno:2019/pagina_da:374/pagina_a:402/intervallo_pagine:374–402/volume:51
51 (2019): 374–402. doi:10.1137/18M1203821
info:cnr-pdr/source/autori:Bertsch M.; Giacomelli L.; Tesei A./titolo:Measure-valued solutions to a nonlinear fourth-order regularization of forward-backward parabolic equations/doi:10.1137%2F18M1203821/rivista:SIAM journal on mathematical analysis (Print)/anno:2019/pagina_da:374/pagina_a:402/intervallo_pagine:374–402/volume:51
We introduce and analyze a new, nonlinear fourth-order regularization of forwardbackward parabolic equations. In one space dimension, under general assumptions on the potentials, which include those of Perona-Malik type, we prove existence of Radon m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fa9026582475acdb6f9d75a6c86bdf59
http://hdl.handle.net/2108/215056
http://hdl.handle.net/2108/215056
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.