Zobrazeno 1 - 10
of 19 949
pro vyhledávání: '"Fortuin, A."'
Autor:
Foissy, Loïc, Malvenuto, Claudia
We compute an explicit formula for the antipode of the double bialgebra of graphs in terms of totally acyclic partial orientations, using some general results on double bialgebras. In analogy to what was already proven in Hopf-algebraic terms for the
Externí odkaz:
http://arxiv.org/abs/2404.05497
Autor:
Feng, Yuyang
We consider infinite random planar maps decorated by the critical Fortuin-Kasteleyn model with parameter $q>4$. The paper demonstrates that when appropriately rescaled, these maps converge in law to the infinite continuum random tree as pointed metri
Externí odkaz:
http://arxiv.org/abs/2311.06235
Publikováno v:
Physical Review E 107, 044103 (2023)
Recently, we argued [Chin. Phys. Lett. $39$, 080502 (2022)] that the Ising model simultaneously exhibits two upper critical dimensions $(d_c=4, d_p=6)$ in the Fortuin-Kasteleyn (FK) random-cluster representation. In this paper, we perform a systemati
Externí odkaz:
http://arxiv.org/abs/2212.08544
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Phys. Rev. E 103, 012102 (2021)
The Fortuin-Kasteleyn (FK) random cluster model, which can be exactly mapped from the $q$-state Potts spin model, is a correlated bond percolation model. By extensive Monte Carlo simulations, we study the FK bond representation of the critical Ising
Externí odkaz:
http://arxiv.org/abs/2008.07256
Publikováno v:
Phys. Rev. E 102, 012131 (2020)
We apply generalisations of the Swendson-Wang and Wolff cluster algorithms, which are based on the construction of Fortuin-Kasteleyn clusters, to the three-dimensional $\pm 1$ random-bond Ising model. The behaviour of the model is determined by the t
Externí odkaz:
http://arxiv.org/abs/1905.04220
Publikováno v:
Phys. Rev. E 102, 022125 (2020)
We present an extensive Markov-chain Monte Carlo study of the finite-size scaling behavior of the Fortuin-Kasteleyn Ising model on five-dimensional hypercubic lattices with periodic boundary conditions. We observe that physical quantities, which incl
Externí odkaz:
http://arxiv.org/abs/1909.04328
Publikováno v:
Phys. Rev. E 99, 042150 (2019)
We present a Monte Carlo study of the Fortuin-Kasteleyn (FK) clusters of the Ising model on the square (2D) and simple-cubic (3D) lattices. The wrapping probability, a dimensionless quantity characterizing the topology of the FK clusters on a torus,
Externí odkaz:
http://arxiv.org/abs/1811.03358
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
J. Stat. Phys. 170, 22 (2018)
We consider the coupling from the past implementation of the random-cluster heat-bath process, and study its random running time, or coupling time. We focus on hypercubic lattices embedded on tori, in dimensions one to three, with cluster fugacity at
Externí odkaz:
http://arxiv.org/abs/1705.07189