Zobrazeno 1 - 10
of 253
pro vyhledávání: '"Fornaroli, P."'
In the first part of the paper we describe $\varphi$-derivations of the incidence algebra $I(X,K)$ of a locally finite poset $X$ over a field $K$, where $\varphi$ is an arbitrary automorphism of $I(X,K)$. We show that they admit decompositions simila
Externí odkaz:
http://arxiv.org/abs/2307.08439
Autor:
Fornaroli, Érica Zancanella
Let $K$ be a field and $X$ a connected partially ordered set. In the first part of this paper, we show that the finitary incidence algebra $FI(X,K)$ of $X$ over $K$ has an involution of the second kind if and only if $X$ has an involution and $K$ has
Externí odkaz:
http://arxiv.org/abs/2306.12512
We fully characterize regular Hom-Lie structures on the incidence algebra $I(X,K)$ of a finite connected poset $X$ over a field $K$. We prove that such a structure is the sum of a central-valued linear map annihilating the Jacobson radical of $I(X,K)
Externí odkaz:
http://arxiv.org/abs/2212.12591
Autor:
Ellen A. R. Welti, Diana E. Bowler, James S. Sinclair, Florian Altermatt, Mario Álvarez-Cabria, Giuseppe Amatulli, David G. Angeler, Gaït Archambaud, Iñaki Arrate Jorrín, Thomas Aspin, Iker Azpiroz, Nathan Jay Baker, Iñaki Bañares, José Barquín Ortiz, Christian L. Bodin, Luca Bonacina, Núria Bonada, Roberta Bottarin, Miguel Cañedo-Argüelles, Zoltán Csabai, Thibault Datry, Elvira de Eyto, Alain Dohet, Sami Domisch, Gerald Dörflinger, Emma Drohan, Knut A. Eikland, Judy England, Tor E. Eriksen, Vesela Evtimova, Maria J. Feio, Martial Ferréol, Mathieu Floury, Maxence Forcellini, Marie Anne Eurie Forio, Riccardo Fornaroli, Nikolai Friberg, Jean-François Fruget, Jaime R. Garcia Marquez, Galia Georgieva, Peter Goethals, Manuel A. S. Graça, Andy House, Kaisa-Leena Huttunen, Thomas Correll Jensen, Richard K. Johnson, J. Iwan Jones, Jens Kiesel, Aitor Larrañaga, Patrick Leitner, Lionel L’Hoste, Marie-Hélène Lizée, Armin W. Lorenz, Anthony Maire, Jesús Alberto Manzanos Arnaiz, Brendan Mckie, Andrés Millán, Timo Muotka, John F. Murphy, Davis Ozolins, Riku Paavola, Petr Paril, Francisco Jesús Peñas Silva, Marek Polasek, Jes Rasmussen, Manu Rubio, David Sánchez Fernández, Leonard Sandin, Ralf B. Schäfer, Astrid Schmidt-Kloiber, Alberto Scotti, Longzhu Q. Shen, Agnija Skuja, Stefan Stoll, Michal Straka, Rachel Stubbington, Henn Timm, Violeta G. Tyufekchieva, Iakovos Tziortzis, Yordan Uzunov, Gea H. van der Lee, Rudy Vannevel, Emilia Varadinova, Gábor Várbíró, Gaute Velle, Piet F. M. Verdonschot, Ralf C. M. Verdonschot, Yanka Vidinova, Peter Wiberg-Larsen, Peter Haase
Publikováno v:
Scientific Data, Vol 11, Iss 1, Pp 1-8 (2024)
Abstract Freshwater macroinvertebrates are a diverse group and play key ecological roles, including accelerating nutrient cycling, filtering water, controlling primary producers, and providing food for predators. Their differences in tolerances and s
Externí odkaz:
https://doaj.org/article/96318d810a1945acb67bc44d68964ad4
Let $FI(X,K)$ be the finitary incidence algebra of a non-connected partially ordered set $X$ over a field $K$ of characteristic different from $2$. For the case where every multiplicative automorphism of $FI(X,K)$ is inner, we present necessary and s
Externí odkaz:
http://arxiv.org/abs/2209.09690
Let $I(X,K)$ be the incidence algebra of a finite connected poset $X$ over a field $K$ and $D(X,K)$ its subalgebra consisting of diagonal elements. We describe the bijective linear maps $\varphi:I(X,K)\to I(X,K)$ that strongly preserve the commutativ
Externí odkaz:
http://arxiv.org/abs/2207.10713
Let $K$ be a field and $X$ a partially ordered set (poset). Let $FI(X,K)$ and $I(X,K)$ be the finitary incidence algebra and the incidence space of $X$ over $K$, respectively, and let $D(X,K)=FI(X,K)(+)I(X,K)$ be the idealization of the $FI(X,K)$-bim
Externí odkaz:
http://arxiv.org/abs/2110.13186
Let $X$ be a finite connected poset and $K$ a field. We study the question, when all Lie automorphisms of the incidence algebra $I(X,K)$ are proper. Without any restriction on the length of $X$ we find only a sufficient condition involving certain eq
Externí odkaz:
http://arxiv.org/abs/2108.03765
Autor:
Fornaroli, Érica Zancanella
Let $X$ be a finite partially ordered set, $R$ an associative unital ring and $\sigma$ an endomorphism of $R$. We describe some properties of the skew incidence ring $I(X,R,\sigma)$ such as invertible elements, idempotents, the Jacobson radical and t
Externí odkaz:
http://arxiv.org/abs/2104.06796
Let $X$ be a finite connected poset and $K$ a field. We give a full description of the Lie automorphisms of the incidence algebra $I(X,K)$. In particular, we show that they are in general not proper.
Comment: Minor changes. Accepted for publicat
Comment: Minor changes. Accepted for publicat
Externí odkaz:
http://arxiv.org/abs/2012.06661