Zobrazeno 1 - 10
of 104
pro vyhledávání: '"Forgács, Tamás"'
Given a Sheffer sequence of polynomials, we introduce the notion of an associated sequence called the cognate sequence. We study the relationship between the zeros of this pair of associated sequences and show that in case of an Appell sequence, as w
Externí odkaz:
http://arxiv.org/abs/2301.04726
We present combinatorial and analytical results concerning a Sheffer sequence with an exponential generating function of the form $G(s,z)=e^{czs+\alpha z^{2}+\beta z^{4}}$, where $\alpha, \beta, c \in \mathbb{R}$ with $\beta<0$ and $c\neq 0$. We demo
Externí odkaz:
http://arxiv.org/abs/2205.15471
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 November 2024 539(1) Part 1
Autor:
Baumheckel, Audrey, Forgács, Tamás
Publikováno v:
Baumheckel, A., & Forg\'acs, T. (2023). An Exploration of Very Triangular Numbers. The PUMP Journal of Undergraduate Research, 6, 317-333. Retrieved from https://journals.calstate.edu/pump/article/view/3853
We present a collection of results concerning the location and distribution of very triangular numbers among triangular numbers, including the twin very triangular number theorem, the existence of arbitrarily long gaps between -- and an analog of Ber
Externí odkaz:
http://arxiv.org/abs/2105.10354
We present combinatorial and analytical results concerning a Sheffer sequence with a generating function of the form $G(x,z)=Q(z)^{x}Q(-z)^{1-x}$, where $Q$ is a quadratic polynomial with real zeros. By using the properties of Riordan matrices we add
Externí odkaz:
http://arxiv.org/abs/2103.01264
Autor:
Forgács, Tamás, Tran, Khang
We prove that the polynomials generated by the relation $\displaystyle{\sum_{m=0}^{\infty} H_m(z)t^m=\frac{1}{P(t)+z t^r Q(t)}}$ are hyperbolic for $m \gg 1$ given that the zeros of the real polynomials $P$ and $Q$ are real and sufficiently separated
Externí odkaz:
http://arxiv.org/abs/1810.01521
In this note we study the convergence of recursively defined infinite series. We explore the role of the derivative of the defining function at the origin (if it exists), and develop a comparison test for such series which can be used even if the def
Externí odkaz:
http://arxiv.org/abs/1803.05523
We prove a Jensen-disc type theorem for polynomials $p\in\mathbb{R}[z]$ having all their zeros in a sector of the complex plane. This result is then used to prove the existence of a collection of linear operators $T\colon\mathbb{R}[z]\to\mathbb{R}[z]
Externí odkaz:
http://arxiv.org/abs/1802.02641
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 October 2022 514(1)
Autor:
Forgács, Tamás
Publikováno v:
Hungarológiai Közlemények / Papers of Hungarian Studies. 23(3):13-24
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=1066429