Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Forey, Arthur"'
In this paper we prove motivic versions of the Langlands-Shelstad Fundamental Lemma and Ng\^o's Geometric Stabilization. To achieve this, we follow the strategy from the recent proof by Groechenig, Wyss and Ziegler which avoided the use of perverse s
Externí odkaz:
http://arxiv.org/abs/2308.12195
We prove some old and new convergence statements for fixed-points statistics using tensor envelope categories, such as the Deligne--Knop category of representations of the "symmetric group" $S_t$ for an indeterminate~$t$. We also discuss some arithme
Externí odkaz:
http://arxiv.org/abs/2304.05844
We report new examples of Sidon sets in abelian groups arising from generalized jacobians of curves, and discuss some of their properties with respect to size and structure.
Comment: v3; 17 pages, 1 figure; minor correction concerning the relati
Comment: v3; 17 pages, 1 figure; minor correction concerning the relati
Externí odkaz:
http://arxiv.org/abs/2301.12878
We study the arithmetic Fourier transforms of trace functions on general connected commutative algebraic groups. To do so, we first prove a generic vanishing theorem for twists of perverse sheaves by characters, and using this tool, we construct a ta
Externí odkaz:
http://arxiv.org/abs/2109.11961
Autor:
Forey, Arthur, Kowalski, Emmanuel
We report new examples of Sidon sets in abelian groups arising from algebraic geometry.
Comment: This paper is superseded by the more recent work arXiv:2301.12878 (joint with J. Fres\'an)
Comment: This paper is superseded by the more recent work arXiv:2301.12878 (joint with J. Fres\'an)
Externí odkaz:
http://arxiv.org/abs/2103.04917
Autor:
Forey, Arthur
Cette thèse est consacrée à définir et étudier des invariants motiviques associés aux ensembles semi-algébriques dans les corps valués. Ceux-ci sont les combinaisons booléennes d'ensembles définis par des inégalités valuatives. L'outil pr
Externí odkaz:
http://www.theses.fr/2017PA066557/document
Autor:
Forey, Arthur, Yin, Yimu
We construct a new motivic integration morphism, the so-call bounded integral, that interpolates both the integration morphisms with and without volume forms of Hrushovski and Kazhdan. This is done within the framework of model theory of algebraicall
Externí odkaz:
http://arxiv.org/abs/1910.12764
Publikováno v:
Alg. Number Th. 14 (2020) 1423-1456
We prove a uniform version of non-Archimedean Yomdin-Gromov parametrizations in a definable context with algebraic Skolem functions in the residue field. The parametrization result allows us to bound the number of F_q[t]-points of bounded degrees of
Externí odkaz:
http://arxiv.org/abs/1902.06589
Autor:
Forey, Arthur
In this note, we establish a version of the local Cauchy-Crofton formula for definable sets in Henselian discretely valued fields of characteristic zero. It allows to compute the motivic local density of a set from the densities of its projections in
Externí odkaz:
http://arxiv.org/abs/1711.03811
Autor:
Forey, Arthur
Let $k$ be a field of characteristic zero containing all roots of unity and $K=k((t))$. We build a ring morphism from the Grothendieck group of semi-algebraic sets over $K$ to the Grothendieck group of motives of rigid analytic varieties over $K$. It
Externí odkaz:
http://arxiv.org/abs/1706.07233