Zobrazeno 1 - 10
of 506
pro vyhledávání: '"Ford, G. P."'
We investigate the singularities of the trace of the half-wave group, $\mathrm{Tr} \, e^{-it\sqrt\Delta}$, on Euclidean surfaces with conical singularities $(X,g)$. We compute the leading-order singularity associated to periodic orbits with successiv
Externí odkaz:
http://arxiv.org/abs/1505.01043
We look at the $L^p$ bounds on eigenfunctions for polygonal domains (or more generally Euclidean surfaces with conic singularities) by analysis of the wave operator on the flat Euclidean cone $C(\mathbb{S}^1_\rho) := \mathbb{R}_+ \times \left(\mathbb
Externí odkaz:
http://arxiv.org/abs/1504.00079
Publikováno v:
Journal of Multidisciplinary Healthcare, Vol Volume 14, Pp 459-491 (2021)
Gladys Yinusa,1 Janet Scammell,1 Jane Murphy,2 Gráinne Ford,3 Sue Baron1 1Department of Nursing Science, Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, Dorset, UK; 2Ageing and Dementia Research Centre, Faculty of Health
Externí odkaz:
https://doaj.org/article/fe1466c36e854d859058cc43699214f1
Autor:
Ford, G. Austin, Wunsch, Jared
Let $(X,g)$ be a compact manifold with conic singularities. Taking $\Delta_g$ to be the Friedrichs extension of the Laplace-Beltrami operator, we examine the singularities of the trace of the half-wave group $e^{- i t \sqrt{ \smash[b]{\Delta_g}}}$ ar
Externí odkaz:
http://arxiv.org/abs/1411.6913
Autor:
Ford, G. W., O'Connell, R. F.
Publikováno v:
Phys.Rev.A 89,054101(2014)
Here the problem considered is that of a pair of oscillators coupled to a common heat bath. Many, if not most, discussions of a single operator coupled to a bath have used the independent oscillator model of the bath. However, that model has no notio
Externí odkaz:
http://arxiv.org/abs/1408.5775
Autor:
Ford, G. W., O'Connell, R. F.
Publikováno v:
Physical Review E 88, 044101 (2013)
We present a simple calculation of the Lorentz transformation of the spectral distribution of blackbody radiation at temperature T. Here we emphasize that T is the temperature in the blackbody rest frame and does not change. We thus avoid the confuse
Externí odkaz:
http://arxiv.org/abs/1310.3238
Autor:
Smith, M. W. L., Eales, S. A., Gomez, H. L., Duval, J. Roman, Fritz, J., Braun, R., Baes, M., Bendo, G. J., Blommaert, J. A. D. L, Boquien, M., Boselli, A., Clements, D. L., Cooray, A. R., Cortese, L., de Looze, I., Ford, G. P., Gear, W. K., Gentile, G., Gordon, K. D., Kirk, J., Lebouteiller, V., Madden, S., Mentuch, E., O'Halloran, B., Page, M. J., Schulz, B., Spinoglio, L., Verstappen, J., Wilson, C. D.
We present an analysis of the dust and gas in Andromeda, using Herschel images sampling the entire far-infrared peak. We fit a modified-blackbody model to ~4000 quasi-independent pixels with spatial resolution of ~140pc and find that a variable dust-
Externí odkaz:
http://arxiv.org/abs/1204.0785
Autor:
Fritz, J., Gentile, G., Smith, M. W. L., Gear, W. K., Braun, R., Duval, J. Roman, Bendo, G. J., Baes, M., Eales, S. A., Verstappen, J., Blommaert, J. A. D. L., Boquien, M., Boselli, A., Clements, D., Cooray, A. R., Cortese, L., De Looze, I., Ford, G. P., Galliano, F., Gomez, H. L., Gordon, K. D., Lebouteiller, V., O'Halloran, B., Kirk, J., Madden, S. C., Page, M. J., Remy, A., Roussel, H., Spinoglio, L., Thilker, D., Vaccari, M., Wilson, C. D., Waelkens, C.
We have obtained Herschel images at five wavelengths from 100 to 500 micron of a ~5.5x2.5 degree area centred on the local galaxy M31 (Andromeda), our nearest neighbour spiral galaxy, as part of the Herschel guaranteed time project "HELGA". The main
Externí odkaz:
http://arxiv.org/abs/1112.3348
Publikováno v:
Phys. Rev. A 84, 035801 (2011)
The Abraham-Lorentz-Dirac equation for a point electron, while suffering from runaway solutions and an acausal response to external forces, is compatible with the optical theorem. We show that a theory of radiative reaction that allows for a finite c
Externí odkaz:
http://arxiv.org/abs/1107.2851
We consider the solution operator for the wave equation on the flat Euclidean cone over the circle of radius $\rho > 0$, the manifold $\mathbb{R}_+ \times \mathbb{R} / 2 \pi \rho \mathbb{Z}$ equipped with the metric $\g(r,\theta) = dr^2 + r^2 d\theta
Externí odkaz:
http://arxiv.org/abs/1105.5410