Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Forcillo, Nicolò"'
In this paper, we prove that flat free boundaries of solutions to inhomogeneous one-phase Stefan problem are $C^{1,\alpha}$.
Externí odkaz:
http://arxiv.org/abs/2404.07535
We prove that nonnegative almost minimizers of the horizontal Bernoulli-type functional $$ J(u,\Omega):=\int_{\Omega}\Big(|\nabla_{\mathbb{G}} u(x)|^2+\chi_{\{u>0\}}(x)\Big)\,dx$$ are Lipschitz continuous in the intrinsic sense.
Externí odkaz:
http://arxiv.org/abs/2311.02975
Autor:
Ferrari, Fausto, Forcillo, Nicolò
Publikováno v:
Boll Unione Mat Ital (2023)
In this paper we provide a different approach to the Alt-Caffarelli-Friedman monotonicity formula, reducing the problem to test the monotone increasing behavior of the mean value of a function involving the norm of the gradient. In particular, we sho
Externí odkaz:
http://arxiv.org/abs/2310.13264
In this note we prove a sub-Riemannian maximum modulus theorem in a Carnot group. Using a nontrivial counterexample, we also show that such result is best possible, in the sense that in its statement one cannot replace the right-invariant horizontal
Externí odkaz:
http://arxiv.org/abs/2305.19145
We prove that, given~$p>\max\left\{\frac{2n}{n+2},1\right\}$, the nonnegative almost minimizers of the nonlinear free boundary functional $$ J_p(u,\Omega):=\int_{\Omega}\Big( |\nabla u(x)|^p+\chi_{\{u>0\}}(x)\Big)\,dx$$ are Lipschitz continuous.
Externí odkaz:
http://arxiv.org/abs/2206.03238
Autor:
Ferrari, Fausto, Forcillo, Nicolò
Publikováno v:
Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 34 (2023)
In this paper we provide a counterexample about the existence of an increasing monotonicity behavior of a function introduced in \cite{FeFo}, companion of the celebrated Alt-Caffarelli-Friedman monotonicity formula, in the noncommutative framework.
Externí odkaz:
http://arxiv.org/abs/2203.06232
We provide perturbative estimates for the one-phase Stefan free boundary problem and obtain the regularity of flat free boundaries via a linearization technique in the spirit of the elliptic counterpart established by the first author.
Externí odkaz:
http://arxiv.org/abs/2007.08611
Autor:
Ferrari, Fausto, Forcillo, Nicolò
In this paper we revisit the proof of the Alt-Caffarelli-Friedman monotonicity formula. Then, in the framework of the Heisenberg group, we discuss the existence of an analogous monotonicity formula introducing a necessary condition for its existence,
Externí odkaz:
http://arxiv.org/abs/2001.06314
Autor:
Ferrari, Fausto, Forcillo, Nicolò
The aim of this paper is to study the existence of an Alt-Caffarelli-Friedman monotonicity type formula in the Heisenberg group.
Externí odkaz:
http://arxiv.org/abs/2001.04393
In this note, we showcase some recent results concerning the stickiness properties of nonlocal minimal graphs in the plane. To start with, the nonlocal minimal graphs in the plane enjoy an enhanced boundary regularity, since boundary continuity with
Externí odkaz:
http://arxiv.org/abs/1912.05794