Zobrazeno 1 - 10
of 293
pro vyhledávání: '"Floyd, William"'
It is well known that the dynamical behavior of a rational map $f:\widehat{\mathbb C}\to \widehat{\mathbb C}$ is governed by the forward orbits of the critical points of $f$. The map $f$ is said to be postcritically finite if every critical point has
Externí odkaz:
http://arxiv.org/abs/2105.10055
We prove that every sufficiently large iterate of a Thurston map which is not doubly covered by a torus endomorphism and which does not have a Levy cycle is isotopic to the subdivision map of a finite subdivision rule. We determine which Thurston map
Externí odkaz:
http://arxiv.org/abs/1908.07571
Nearly Euclidean Thurston (NET) maps are described by simple diagrams which admit a natural notion of size. Given a size bound $C$, there are finitely many diagrams of size at most $C$. Given a NET map $F$ presented by a diagram of size at most $C$,
Externí odkaz:
http://arxiv.org/abs/1812.01066
Publikováno v:
Journal de Théorie des Nombres de Bordeaux, 2022 Jan 01. 34(3), 787-812.
Externí odkaz:
https://www.jstor.org/stable/48712092
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
An orientation-preserving branched covering $f: S^2 \to S^2$ is a nearly Euclidean Thurston (NET) map if each critical point is simple and its postcritical set has exactly four points. Inspired by classical, non-dynamical notions such as Hurwitz equi
Externí odkaz:
http://arxiv.org/abs/1703.03983
A branched covering $f: S^2 \to S^2$ is a nearly Euclidean Thurston (NET) map if each critical point is simple and its postcritical set has exactly four points. We show that up to equivalence, each NET map admits a normal form in terms of simple affi
Externí odkaz:
http://arxiv.org/abs/1701.00443
Autor:
Floyd, William, Kelsey, Gregory, Koch, Sarah, Lodge, Russell, Parry, Walter, Pilgrim, Kevin M., Saenz, Edgar
We investigate the combinatorial and dynamical properties of so-called nearly Euclidean Thurston maps, or NET maps. These maps are perturbations of many-to-one folding maps of an affine two-sphere to itself. The close relationship between NET maps an
Externí odkaz:
http://arxiv.org/abs/1612.06449
This paper is concerned with growth series for expansion complexes for finite subdivision rules. Suppose X is an expansion complex for a finite subdivision rule with bounded valence and mesh approaching 0, and let S be a seed for X. One can define a
Externí odkaz:
http://arxiv.org/abs/1612.04771
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.