Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Florian van Daalen"'
Publikováno v:
Complex & Intelligent Systems, Vol 10, Iss 4, Pp 5317-5329 (2024)
Abstract Federated learning makes it possible to train a machine learning model on decentralized data. Bayesian networks are widely used probabilistic graphical models. While some research has been published on the federated learning of Bayesian netw
Externí odkaz:
https://doaj.org/article/ddb2cee0caa342cb85309bf7efc88b07
Autor:
Bart Scheenstra, Anke Bruninx, Florian van Daalen, Nina Stahl, Elizabeth Latuapon, Maike Imkamp, Lianne Ippel, Sulaika Duijsings-Mahangi, Djura Smits, David Townend, Inigo Bermejo, Andre Dekker, Laura Hochstenbach, Marieke Spreeuwenberg, Jos Maessen, Arnoud van 't Hof, Bas Kietselaer
Publikováno v:
JMIR Cardio, Vol 6, Iss 2, p e37437 (2022)
Digital health is a promising tool to support people with an elevated risk for atherosclerotic cardiovascular disease (ASCVD) and patients with an established disease to improve cardiovascular outcomes. Many digital health initiatives have been devel
Externí odkaz:
https://doaj.org/article/848eab9bf0ea4493bf42f95be415f8d4
Publikováno v:
Ieee Transactions on Parallel and Distributed Systems, 34(4), 1060-1066. IEEE Computer Society
Privacy-preserving machine learning enables the training of models on decentralized datasets without the need to reveal the data, both on horizontal and vertically partitioned data. However, it relies on specialized techniques and algorithms to perfo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3b3d69a81a731e5c1694473030834af0
https://cris.maastrichtuniversity.nl/en/publications/100184c5-351b-4291-abe4-3782338ea16e
https://cris.maastrichtuniversity.nl/en/publications/100184c5-351b-4291-abe4-3782338ea16e
Autor:
Bart Scheenstra, Anke Bruninx, Florian van Daalen, Nina Stahl, Elizabeth Latuapon, Maike Imkamp, Linne Ippel, Sulaike Duijsings-Mahangi, Djura Smits, David Townend, Inigo Bermejo, Andre Dekker, Laura Hochstenbach, Marieke Spreeuwenberg, Jos Maessen, Arnoud van 't Hof, Bas Kietselaer
UNSTRUCTURED Digital health is a promising tool to support people with an elevated risk for atherosclerotic cardiovascular disease (ASCVD) and patients with established disease to improve cardiovascular outcomes. Many digital health initiatives have
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::215bc931ad8548d95aa4fef4a25ddb8e
https://doi.org/10.2196/preprints.37437
https://doi.org/10.2196/preprints.37437
Autor:
Ralf Peeters, Nasser Davarzani, Hans-Peter Brunner-La Rocca, Joël Karel, Florian Van Daalen, Evgueni Smirnov
Publikováno v:
ICMLA
17th IEEE International Conference on Machine Learning and Applications
17th IEEE International Conference on Machine Learning and Applications
A difficult aspect of a time dependent classification task is that the data are not IID sampled. To model this dependency several approaches in longitudinal analysis were developed. However, these approaches either have trouble estimating their gener