Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Florian B. Pokorny"'
Autor:
Katrin D. Bartl-Pokorny, Claudia Zitta, Markus Beirit, Gunter Vogrinec, Björn W. Schuller, Florian B. Pokorny
Publikováno v:
Frontiers in Digital Health, Vol 6 (2024)
Over the last years, studies using artificial intelligence (AI) for the detection and prediction of diseases have increased and also concentrated more and more on vulnerable groups of individuals, such as infants. The release of ChatGPT demonstrated
Externí odkaz:
https://doaj.org/article/9d5b137a12d047f28f774e04d582afcb
Autor:
Björn W. Schuller, Alican Akman, Yi Chang, Harry Coppock, Alexander Gebhard, Alexander Kathan, Esther Rituerto-González, Andreas Triantafyllopoulos, Florian B. Pokorny
Publikováno v:
Heliyon, Vol 10, Iss 1, Pp e23142- (2024)
Among the 17 Sustainable Development Goals (SDGs) proposed within the 2030 Agenda and adopted by all the United Nations member states, the 13th SDG is a call for action to combat climate change. Moreover, SDGs 14 and 15 claim the protection and conse
Externí odkaz:
https://doaj.org/article/11dc638faf4a42d2a2b53e8020e3be7f
Autor:
Andreas Triantafyllopoulos, Alexander Kathan, Alice Baird, Lukas Christ, Alexander Gebhard, Maurice Gerczuk, Vincent Karas, Tobias Hübner, Xin Jing, Shuo Liu, Adria Mallol-Ragolta, Manuel Milling, Sandra Ottl, Anastasia Semertzidou, Srividya Tirunellai Rajamani, Tianhao Yan, Zijiang Yang, Judith Dineley, Shahin Amiriparian, Katrin D. Bartl-Pokorny, Anton Batliner, Florian B. Pokorny, Björn W. Schuller
Publikováno v:
Frontiers in Digital Health, Vol 5 (2023)
Recent years have seen a rapid increase in digital medicine research in an attempt to transform traditional healthcare systems to their modern, intelligent, and versatile equivalents that are adequately equipped to tackle contemporary challenges. Thi
Externí odkaz:
https://doaj.org/article/37ec478a52a04d60a259dc435e111374
Autor:
Florian B. Pokorny, Maximilian Schmitt, Mathias Egger, Katrin D. Bartl-Pokorny, Dajie Zhang, Björn W. Schuller, Peter B. Marschik
Publikováno v:
Scientific Reports, Vol 12, Iss 1, Pp 1-13 (2022)
Abstract Fragile X syndrome (FXS) and Rett syndrome (RTT) are developmental disorders currently not diagnosed before toddlerhood. Even though speech-language deficits are among the key symptoms of both conditions, little is known about infant vocalis
Externí odkaz:
https://doaj.org/article/e562fe2c040d4189a973867b62649b4e
Autor:
Simon Reich, Dajie Zhang, Tomas Kulvicius, Sven Bölte, Karin Nielsen-Saines, Florian B. Pokorny, Robert Peharz, Luise Poustka, Florentin Wörgötter, Christa Einspieler, Peter B. Marschik
Publikováno v:
Scientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
Abstract The past decade has evinced a boom of computer-based approaches to aid movement assessment in early infancy. Increasing interests have been dedicated to develop AI driven approaches to complement the classic Prechtl general movements assessm
Externí odkaz:
https://doaj.org/article/5e84508d3ab84cf5b9b5854daeaa0dd4
Publikováno v:
Frontiers in Digital Health, Vol 4 (2022)
In recent years, advancements in the field of artificial intelligence (AI) have impacted several areas of research and application. Besides more prominent examples like self-driving cars or media consumption algorithms, AI-based systems have further
Externí odkaz:
https://doaj.org/article/99335d6b1e154e5cafc6ffde6f3ed303
Autor:
Adria, Mallol-Ragolta, Florian B, Pokorny, Katrin D, Bartl-Pokorny, Anastasia, Semertzidou, Bjorn W, Schuller
Publikováno v:
2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC).
This work focuses on the automatic detection of COVID-19 from the analysis of vocal sounds, including sustained vowels, coughs, and speech while reading a short text. Specifically, we use the Mel-spectrogram representations of these acoustic signals
PurposeThe coronavirus disease 2019 (COVID-19) has caused a crisis worldwide. Amounts of efforts have been made to prevent and control COVID-19’s transmission, from early screenings to vaccinations and treatments. Recently, due to the spring up of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3644ccabf3c7abf33977ccd89cbc92e9
https://zenodo.org/record/7117145
https://zenodo.org/record/7117145
Autor:
Gloria Dalla Costa, Judith Dineley, Per Soelberg Sørensen, Raquel Bailon, Matthew Hotopf, Srinivasan Vairavan, Mathias Buron, Giancarlo Comi, Björn Schuller, Carlos Nos, Shuo Liu, Florian B. Pokorny, Ana Isabel Guerrero, Vaibhav A. Narayan, Shaoxiong Sun, Amos Folarin, Yatharth Ranjan, Letizia Leocani, Estela Laporta Puyal, Spyridon Kontaxis, Nicholas Cummins, Callum Stewart, Patrick Locatelli, Jing Han, Richard Dobson, Zulqarnain Rashid, Melinda Magyari, Pauline Conde, Ana Zabalza
Publikováno v:
Liu, S, Han, J, Puyal, E L, Kontaxis, S, Sun, S, Locatelli, P, Dineley, J, Pokorny, F B, Dalla Costa, G, Leocani, L, Guerrero, A I, Nos, C, Zabalza, A, Sorensen, P S, Buron, M, Magyari, M, Ranjan, Y, Rashid, Z, Conde, P, Stewart, C, Folarin, A A, Dobson, R J B, Bailon, R, Vairavan, S, Cummins, N, Narayan, V A, Hotopf, M, Comi, G, Schuller, B & RADAR-CNS Consortium 2022, ' Fitbeat : COVID-19 estimation based on wristband heart rate using a contrastive convolutional auto-encoder ', Pattern Recognition, vol. 123, 108403 . https://doi.org/10.1016/j.patcog.2021.108403
Pattern Recognition
Pattern Recognition
This study proposes a contrastive convolutional auto-encoder (contrastive CAE), a combined architecture of an auto-encoder and contrastive loss, to identify individuals with suspected COVID-19 infection using heart-rate data from participants with mu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7b8dd863a0309e61c297f3dbf7b94a6f
https://curis.ku.dk/portal/da/publications/fitbeat(e7102f68-cfff-4fe4-b8bf-03199a1d93ae).html
https://curis.ku.dk/portal/da/publications/fitbeat(e7102f68-cfff-4fe4-b8bf-03199a1d93ae).html