Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Flores, Mona G"'
Autor:
Peng, Cheng, Yang, Xi, Chen, Aokun, Yu, Zehao, Smith, Kaleb E, Costa, Anthony B, Flores, Mona G, Bian, Jiang, Wu, Yonghui
Objective To solve major clinical natural language processing (NLP) tasks using a unified text-to-text learning architecture based on a generative large language model (LLM) via prompt tuning. Methods We formulated 7 key clinical NLP tasks as text-to
Externí odkaz:
http://arxiv.org/abs/2312.06099
Autor:
Peng, Cheng, Yang, Xi, Chen, Aokun, Smith, Kaleb E, PourNejatian, Nima, Costa, Anthony B, Martin, Cheryl, Flores, Mona G, Zhang, Ying, Magoc, Tanja, Lipori, Gloria, Mitchell, Duane A, Ospina, Naykky S, Ahmed, Mustafa M, Hogan, William R, Shenkman, Elizabeth A, Guo, Yi, Bian, Jiang, Wu, Yonghui
There is enormous enthusiasm and concerns in using large language models (LLMs) in healthcare, yet current assumptions are all based on general-purpose LLMs such as ChatGPT. This study develops a clinical generative LLM, GatorTronGPT, using 277 billi
Externí odkaz:
http://arxiv.org/abs/2305.13523
Autor:
Hatamizadeh, Ali, Yin, Hongxu, Molchanov, Pavlo, Myronenko, Andriy, Li, Wenqi, Dogra, Prerna, Feng, Andrew, Flores, Mona G., Kautz, Jan, Xu, Daguang, Roth, Holger R.
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data. This capability makes it especially interesting for healthcare applications where patient and data privacy is of utmost concern. However, recent
Externí odkaz:
http://arxiv.org/abs/2202.06924
Autor:
Yang, Xi, Chen, Aokun, PourNejatian, Nima, Shin, Hoo Chang, Smith, Kaleb E, Parisien, Christopher, Compas, Colin, Martin, Cheryl, Flores, Mona G, Zhang, Ying, Magoc, Tanja, Harle, Christopher A, Lipori, Gloria, Mitchell, Duane A, Hogan, William R, Shenkman, Elizabeth A, Bian, Jiang, Wu, Yonghui
There is an increasing interest in developing artificial intelligence (AI) systems to process and interpret electronic health records (EHRs). Natural language processing (NLP) powered by pretrained language models is the key technology for medical AI
Externí odkaz:
http://arxiv.org/abs/2203.03540
Autor:
Gupta, Vikash, Taylor, Clayton, Bonnet, Sarah, Prevedello, Luciano M., Hawley, Jeffrey, White, Richard D, Flores, Mona G, Erdal, Barbaros Selnur
Screening mammograms are a routine imaging exam performed to detect breast cancer in its early stages to reduce morbidity and mortality attributed to this disease. In order to maximize the efficacy of breast cancer screening programs, proper mammogra
Externí odkaz:
http://arxiv.org/abs/2009.13580
Autor:
Gupta1, Vikash, Roth, Holger, Buch3, Varun, Rockenbach, Marcio A. B. C., White, Richard D, Yang, Dong, Laur, Olga, Ghoshhajra, Brian, Dayan, Ittai, Xu, Daguang, Flores, Mona G., Erdal, Barbaros Selnur
The training of deep learning models typically requires extensive data, which are not readily available as large well-curated medical-image datasets for development of artificial intelligence (AI) models applied in Radiology. Recognizing the potentia
Externí odkaz:
http://arxiv.org/abs/2009.12437
Autor:
Peng, Cheng1 (AUTHOR), Yang, Xi1,2 (AUTHOR), Chen, Aokun1,2 (AUTHOR), Yu, Zehao1 (AUTHOR), Smith, Kaleb E3 (AUTHOR), Costa, Anthony B3 (AUTHOR), Flores, Mona G3 (AUTHOR), Bian, Jiang1,2 (AUTHOR), Wu, Yonghui1,2 (AUTHOR) yonghui.wu@ufl.edu
Publikováno v:
Journal of the American Medical Informatics Association. Sep2024, Vol. 31 Issue 9, p1892-1903. 12p.
Autor:
Rockenbach, Marcio A.B.C., Buch, Varun, Gupta, Vikash, Kotecha, Gopal K., Laur, Olga, Erdal, Barbaros S., Yang, Dong, Xu, Daguang, Ghoshhajra, Brian B., Flores, Mona G., Dayan, Ittai, Roth, Holger, White, Richard D.
Publikováno v:
In Intelligence-Based Medicine 2022 6
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.