Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Floccari, Salvatore"'
Autor:
Floccari, Salvatore, Varesco, Mauro
We prove the conjectures of Hodge and Tate for any four-dimensional hyper-K\"ahler variety of generalized Kummer type. For an arbitrary variety $X$ of generalized Kummer type, we show that all Hodge classes in the subalgebra of the rational cohomolog
Externí odkaz:
http://arxiv.org/abs/2308.04865
Autor:
Floccari, Salvatore
We prove the conjectures of Hodge and Tate for any six-dimensional hyper-K\"ahler variety that is deformation equivalent to a generalized Kummer variety.
Comment: 31 pages, comments welcome!
Comment: 31 pages, comments welcome!
Externí odkaz:
http://arxiv.org/abs/2308.02267
Autor:
Floccari, Salvatore
Publikováno v:
Compositio Mathematica, Volume 160, Issue 2, February 2024, pp. 388 - 410
We prove that any hyper-K\"{a}hler sixfold $K$ of generalized Kummer type has a naturally associated manifold $Y_K$ of $\mathrm{K}3^{[3]}$-type. It is obtained as crepant resolution of the quotient of $K$ by a group of symplectic involutions acting t
Externí odkaz:
http://arxiv.org/abs/2210.02948
Autor:
Floccari, Salvatore
Publikováno v:
Ãpijournal de Géométrie Algébrique, Volume 7 (February 13, 2023) epiga:9758
We prove that the rational Chow motive of a six dimensional hyper-K\"{a}hler variety obtained as symplectic resolution of O'Grady type of a singular moduli space of semistable sheaves on an abelian surface $A$ belongs to the tensor category of motive
Externí odkaz:
http://arxiv.org/abs/2203.16257
Autor:
Floccari, Salvatore
Publikováno v:
Mathematische Zeitschrift 301, 893-916 (2022)
We show that the Andr\'{e} motive of a hyper-K\"{a}hler variety $X$ over a field $K \subset \mathbb{C}$ with $b_2(X)>6$ is governed by its component in degree $2$. More precisely, we prove that if $X_1$ and $X_2$ are deformation equivalent hyper-K\"{
Externí odkaz:
http://arxiv.org/abs/2007.01841
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Communications in Contemporary Mathematics, 2020
We investigate how the motive of hyper-K\"ahler varieties is controlled by weight-2 (or surface-like) motives via tensor operations. In the first part, we study the Voevodsky motive of singular moduli spaces of semistable sheaves on K3 and abelian su
Externí odkaz:
http://arxiv.org/abs/1911.06572
Autor:
Floccari, Salvatore
Publikováno v:
Manuscripta Mathematica 168, 309-324 (2022)
We study the Mumford--Tate conjecture for hyperk\"{a}hler varieties. We show that the full conjecture holds for all varieties deformation equivalent to either an Hilbert scheme of points on a K3 surface or to O'Grady's ten dimensional example, and al
Externí odkaz:
http://arxiv.org/abs/1904.06238
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Floccari, Salvatore
Publikováno v:
Épijournal de Géométrie Algébrique. 7
We prove that the rational Chow motive of a six dimensional hyper-K\"{a}hler variety obtained as symplectic resolution of O'Grady type of a singular moduli space of semistable sheaves on an abelian surface $A$ belongs to the tensor category of motive