Zobrazeno 1 - 10
of 102
pro vyhledávání: '"Flenner, H."'
Publikováno v:
In: Birational geometry, rational curves, and arithmetic, Springer, 2013, 1-13
In this note we survey recent results on automorphisms of affine algebraic varieties, infinitely transitive group actions and flexibility. We present related constructions and examples, and discuss geometric applications and open problems.
Comme
Comme
Externí odkaz:
http://arxiv.org/abs/1210.6937
Publikováno v:
Duke Math. J. 162, no. 4 (2013), 767-823
Given an affine algebraic variety X of dimension at least 2, we let SAut (X) denote the special automorphism group of X i.e., the subgroup of the full automorphism group Aut (X) generated by all one-parameter unipotent subgroups. We show that if SAut
Externí odkaz:
http://arxiv.org/abs/1011.5375
Autor:
Buchweitz, R. -O., Flenner, H.
We introduce Hochschild (co-)homology of morphisms of schemes or analytic spaces and study its fundamental properties. In analogy with the cotangent complex we introduce the so called (derived) Hochschild complex of a morphism; the Hochschild cohomol
Externí odkaz:
http://arxiv.org/abs/math/0606593
Autor:
Buchweitz, R. -O., Flenner, H.
We show that a formal power series ring $A[[X]]$ over a noetherian ring $A$ is not a projective module unless $A$ is artinian. However, if $(A,{\mathfrak m})$ is local, then $A[[X]]$ behaves like a projective module in the sense that $Ext^p_A(A[[X]],
Externí odkaz:
http://arxiv.org/abs/math/0509180
Autor:
Flenner, H., Lübke, M.
Let X be a complex space and F a coherent O_X-module. A F-(co)framed} sheaf on X is a pair (E,f) with a coherent O_X-module E and a morphism of coherent sheaves f : F -> E (resp. f : E -> F). Two such pairs (E,f) and (E',f') are said to be isomorphic
Externí odkaz:
http://arxiv.org/abs/math/0102115
Autor:
Buchweitz, R. -O., Flenner, H.
We construct a general semiregularity map for cycles on a complex analytic or algebraic manifold and show that such semiregularity map can be obtained from the classical tool of the Atiyah-Chern character. The first part of the paper is fairly detail
Externí odkaz:
http://arxiv.org/abs/math/9907004
Autor:
Flenner, H., Zaidenberg, M.
In the previous paper [E-print alg-geom/9507004] we classified the rational cuspidal plane curves C with a cusp of multiplicity deg C - 2. In particular, we showed that any such curve can be transformed into a line by Cremona transformations. Here we
Externí odkaz:
http://arxiv.org/abs/alg-geom/9709001
Autor:
Flenner, H., Zaidenberg, M.
We obtain new examples and the complete list of the rational cuspidal plane curves $C$ with at least three cusps, one of which has multiplicity ${\rm deg}\,C - 2$. It occurs that these curves are projectively rigid. We also discuss the general proble
Externí odkaz:
http://arxiv.org/abs/alg-geom/9507004