Zobrazeno 1 - 10
of 71
pro vyhledávání: '"Flavia Giannetti"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We study the Dirichlet problem for the second order elliptic equation (Equation presented) in a bounded regular domain Ω ⊂ ℝN, N > 2. We assume that f ∈ L2 and that the coefficients aij are measurable and bounded functions with the first deriv
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3730::105fc7dbef02244789db0fc595d779a5
http://hdl.handle.net/11588/720996
http://hdl.handle.net/11588/720996
Autor:
Giorgio Stefani, Flavia Giannetti
Publikováno v:
Forum Mathematicum. 35:187-199
We prove a lower bound on the number of the convex components of a compact set with non-empty interior in ℝ n {\mathbb{R}^{n}} for all n ≥ 2 {n\geq 2} . Our result generalizes and improves the inequalities previously obtained in [M. Carozza, F. G
Publikováno v:
Mathematische Nachrichten. 293:2082-2111
We consider weak solutions (Formula presented.) to stationary p-Stokes systems of the type (Formula presented.) in (Formula presented.), where the function (Formula presented.) satisfies p-growth conditions in ξ and depends Hölder continuously on x
Autor:
Patrizia Di Gironimo, Flavia Giannetti
Publikováno v:
Banach Journal of Mathematical Analysis. 14:1670-1691
We deal with existence and regularity for weak solutions to Dirichlet problems of the type $$\begin{aligned} \left\{ \begin{array}{ll} - \mathrm{div} (A(x)Xu) +b(x)Xu + c(x)u=f\quad \hbox {in} \; \varOmega \\ \\ u=0 \quad \quad \hbox {on} \; \partial
Publikováno v:
Journal of Mathematical Analysis and Applications. 479:185-213
We investigate solutions to nonlinear elliptic Dirichlet problems of the type \[ \left\{\begin{array}{cl} - {\rm div} A(x,u,\nabla u)= \mu &\qquad \mathrm{ in}\qquad \Omega, u=0 &\qquad \mathrm{ on}\qquad \partial\Omega, \end{array}\right. \] where $
Publikováno v:
Forum Mathematicum. 31:1027-1050
We prove partial and full boundary Hölder continuity, under a suitable regularity on the boundary datum, of the minimizers of non-autonomous integral functionals of the type ∫ Ω Φ ( ( A i j α β ( x , u ) D i u α D