Zobrazeno 1 - 10
of 36
pro vyhledávání: '"Flank D. M. Bezerra"'
Publikováno v:
Electronic Journal of Differential Equations, Vol 2019, Iss 72,, Pp 1-19 (2019)
In this article we study non-autonomous approximations governed by the fractional powers of damped wave operators of order $\alpha \in (0,1)$ subject to Dirichlet boundary conditions in an $n$-dimensional bounded domain with smooth boundary. We give
Externí odkaz:
https://doaj.org/article/f5ab3bf9c70241b99329fba88497d9e5
Publikováno v:
Electronic Journal of Differential Equations, Vol 2018, Iss 23,, Pp 1-14 (2018)
In this article we study the long time behavior of the two-dimensional flow for non-Newtonian micropolar fluids in bounded smooth domains, in the sense of pullback attractors. We prove the existence and upper semicontinuity of the pullback attract
Externí odkaz:
https://doaj.org/article/a70cdd3b42a74c48a6ce16ee7a556bcb
Publikováno v:
Electronic Journal of Differential Equations, Vol 2013, Iss 221,, Pp 1-9 (2013)
In this work we consider the Dirichlet problem governed by a non local evolution equation. We prove the existence of exponential attractors for the flow generated by this problem, and as a consequence we obtain the finite dimensionality of the glo
Externí odkaz:
https://doaj.org/article/2132c38c6f944cac9c5bb7705a1501a8
Publikováno v:
Nonlinearity. 36:1218-1244
In this paper we are concerned with convergence properties of pullback attractors with respect to order of the fractional oscillon equations, that is, we study the fast growing dissipative semilinear oscillon equations as a limiting problem of semili
Autor:
Flank D. M. Bezerra, Vando Narciso
Publikováno v:
Zeitschrift für angewandte Mathematik und Physik. 74
Publikováno v:
Nonlinear Differential Equations and Applications NoDEA. 30
Autor:
Lucas A. Santos, Flank D. M. Bezerra
Publikováno v:
Bulletin of the Brazilian Mathematical Society, New Series. 54
Publikováno v:
Journal of Differential Equations. 298:30-67
In this paper we consider the semilinear damped wave problem of the form { ( α ( t ) u t ) t − β ( t ) Δ u + γ ( t ) u t + δ ( t ) u = β ( t ) f ( u ) , x ∈ Ω , t > τ , u ( x , t ) = 0 , x ∈ ∂ Ω , t ⩾ τ , u ( x , τ ) = u τ ( x )
Autor:
Flank D. M. Bezerra, Lucas A. Santos
Publikováno v:
Mathematische Annalen.
Publikováno v:
Differential Equations and Dynamical Systems.