Zobrazeno 1 - 10
of 84
pro vyhledávání: '"Flank D. M. Bezerra"'
Publikováno v:
Electronic Journal of Differential Equations, Vol 2019, Iss 72,, Pp 1-19 (2019)
In this article we study non-autonomous approximations governed by the fractional powers of damped wave operators of order $\alpha \in (0,1)$ subject to Dirichlet boundary conditions in an $n$-dimensional bounded domain with smooth boundary. We give
Externí odkaz:
https://doaj.org/article/f5ab3bf9c70241b99329fba88497d9e5
Publikováno v:
Nonlinearity. 36:1218-1244
In this paper we are concerned with convergence properties of pullback attractors with respect to order of the fractional oscillon equations, that is, we study the fast growing dissipative semilinear oscillon equations as a limiting problem of semili
Publikováno v:
Electronic Journal of Differential Equations, Vol 2018, Iss 23,, Pp 1-14 (2018)
In this article we study the long time behavior of the two-dimensional flow for non-Newtonian micropolar fluids in bounded smooth domains, in the sense of pullback attractors. We prove the existence and upper semicontinuity of the pullback attract
Externí odkaz:
https://doaj.org/article/a70cdd3b42a74c48a6ce16ee7a556bcb
Autor:
Flank D. M. Bezerra, Vando Narciso
Publikováno v:
Zeitschrift für angewandte Mathematik und Physik. 74
Publikováno v:
Nonlinear Differential Equations and Applications NoDEA. 30
Autor:
Lucas A. Santos, Flank D. M. Bezerra
Publikováno v:
Bulletin of the Brazilian Mathematical Society, New Series. 54
Publikováno v:
Journal of Differential Equations. 298:30-67
In this paper we consider the semilinear damped wave problem of the form { ( α ( t ) u t ) t − β ( t ) Δ u + γ ( t ) u t + δ ( t ) u = β ( t ) f ( u ) , x ∈ Ω , t > τ , u ( x , t ) = 0 , x ∈ ∂ Ω , t ⩾ τ , u ( x , τ ) = u τ ( x )
Autor:
Flank D. M. Bezerra, Lucas A. Santos
Publikováno v:
Mathematische Annalen.
Publikováno v:
Differential Equations and Dynamical Systems.
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In this paper, we discuss the well-posedness of the Cauchy problem associated with the third-order evolution equation in time $$ u_{ttt} +A u + \eta A^{\frac13} u_{tt} +\eta A^{\frac23} u_t=f(u) $$ where $\eta>0$, $X$ is a separable Hilbert space, $A