Zobrazeno 1 - 10
of 62
pro vyhledávání: '"Flávio U. Coelho"'
Autor:
Flávio U. Coelho, Viktor Chust
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
The concept of generalized path algebras was introduced in (Coelho and Liu, 2000). It was shown in (Ib\'a\~nez Cobos et al., 2008) how to obtain the Gabriel quiver of a given generalized path algebra. In this article, we generalize the concept of gen
Autor:
Flávio U. Coelho
Publikováno v:
São Paulo Journal of Mathematical Sciences. 16:62-82
Autor:
Ibrahim Assem, Flávio U. Coelho
Module theory is a fundamental area of algebra, taught in most universities at the graduate level. This textbook, written by two experienced teachers and researchers in the area, is based on courses given in their respective universities over the las
Autor:
Viktor Chust, Flávio U. Coelho
The concept of generalized path algebras was introduced in (Coelho, Liu, 2000). Roughly speaking, these algebras are constructed in a similar way to that of the path algebras over a quiver, the difference being that we assign an algebra to each verte
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::65d7f3970eb320459baa98702ef77b5e
Autor:
Heily Wagner, Flávio U. Coelho
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Let R be the pullback of two surjective homomorphisms of algebras A → B and C → B. Here we consider a particular class, the so-called linearly oriented pullback, where the injective and projective R-modules can be determined by those ones over A
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::523231026764ff06eae42065361c1d28
Autor:
Ibrahim Assem, Flávio U. Coelho
Publikováno v:
Graduate Texts in Mathematics ISBN: 9783030351175
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c5de766b8bf7874cb4508faaee33375b
https://doi.org/10.1007/978-3-030-35118-2_5
https://doi.org/10.1007/978-3-030-35118-2_5
Autor:
Ibrahim Assem, Flávio U. Coelho
Publikováno v:
Graduate Texts in Mathematics ISBN: 9783030351175
As in Chapter I, we let k be an arbitrary (commutative) field. Our algebras are finite dimensional k-algebras, associative and with an identity. The main working tool in this book is the notion of almost split sequences. It arose from an attempt to u
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::87fb627877035e7b8f693f9e11f8508e
https://doi.org/10.1007/978-3-030-35118-2_2
https://doi.org/10.1007/978-3-030-35118-2_2
Autor:
Flávio U. Coelho, Ibrahim Assem
Publikováno v:
Graduate Texts in Mathematics ISBN: 9783030351175
The previous chapter was mainly of a theoretical nature: we defined irreducible morphisms and almost split sequences and started to explore their use for the understanding of the radical of a module category. However, we did not say much about the ex
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1134b32aeb4cc1d9b043262c8e90af69
https://doi.org/10.1007/978-3-030-35118-2_3
https://doi.org/10.1007/978-3-030-35118-2_3
Autor:
Ibrahim Assem, Flávio U. Coelho
Publikováno v:
Graduate Texts in Mathematics ISBN: 9783030351175
In this book, we assume that the reader has some familiarity with the classical theory of algebras and modules, category theory and homological algebra, such as can be gained from most textbooks in these areas. The first section of this chapter is de
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::aa68227ed78fc8fa33b730f6682b5d4e
https://doi.org/10.1007/978-3-030-35118-2_1
https://doi.org/10.1007/978-3-030-35118-2_1
Autor:
Ibrahim Assem, Flávio U. Coelho
Publikováno v:
Graduate Texts in Mathematics ISBN: 9783030351175
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a6567385379e7436318b60a35e7bb94d
https://doi.org/10.1007/978-3-030-35118-2
https://doi.org/10.1007/978-3-030-35118-2