Zobrazeno 1 - 10
of 2 699
pro vyhledávání: '"Fixed-point index"'
Positive solutions for a Riemann-Liouville-type impulsive fractional integral boundary value problem
Publikováno v:
AIMS Mathematics, Vol 9, Iss 5, Pp 10911-10925 (2024)
In this work, we investigate a Riemann-Liouville-type impulsive fractional integral boundary value problem. Using the fixed point index, we obtain two existence theorems on positive solutions under some conditions concerning the spectral radius of th
Externí odkaz:
https://doaj.org/article/ee2179e5bef6430ca9a5ccf43c3bc608
Autor:
Meiqiang Feng
Publikováno v:
Communications in Analysis and Mechanics, Vol 16, Iss 1, Pp 71-93 (2024)
Our main objective of this paper is to study the singular $ p $-Monge-Ampère problems: equations and systems of equations. New multiplicity results of nontrivial $ p $-convex radial solutions to a single equation involving $ p $-Monge-Ampère operat
Externí odkaz:
https://doaj.org/article/af322182d476408ca95138dddcbd2ccc
Autor:
Zhilin Yang
Publikováno v:
Mathematical Biosciences and Engineering, Vol 20, Iss 12, Pp 20959-20970 (2023)
This paper deals with the existence and multiplicity of convex radial solutions for the Monge-Amp$ \grave{\text e} $re equation involving the gradient $ \nabla u $: $ \begin{cases} \det (D^2u) = f(|x|, -u, |\nabla u|), x\in B, \\ u|_{\partial B} =
Externí odkaz:
https://doaj.org/article/15fd36fbc86640d58faca88571c327a5
Publikováno v:
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 31, Iss 3, Pp 27-45 (2023)
In this paper, we construct the fixed point index for a class of contractive mapping defined by a simulation mapping and a measure of noncompact-ness noted by Zµ− contraction maps. Then we establish some fixed point theorem for this mapping of the
Externí odkaz:
https://doaj.org/article/5a8f928bcb1041a0b3af34a67e7ba78b
Publikováno v:
Open Mathematics, Vol 21, Iss 1, Pp 93-108 (2023)
This article discusses the existence of positive solutions for the system of second-order ordinary differential equation boundary value problems −u″(t)=f(t,u(t),v(t),u′(t)),t∈[0,1],−v″(t)=g(t,u(t),v(t),v′(t)),t∈[0,1],u(0)=u(1)=0,v(0)=
Externí odkaz:
https://doaj.org/article/462740a2603f4d09aa979bf9913ea139
Autor:
Yongxiang Li, Shengbin Yang
Publikováno v:
Symmetry, Vol 16, Iss 7, p 793 (2024)
This paper discusses the existence of positive radial symmetric solutions of the nonlinear biharmonic equation ▵2u=f(u,▵u) on an annular domain Ω in RN with the Navier boundary conditions u|∂Ω=0 and ▵u|∂Ω=0, where f:R+×R−→R+ is a co
Externí odkaz:
https://doaj.org/article/edf5d46ac1da420a93f831fe24d8b19e
Publikováno v:
AIMS Mathematics, Vol 8, Iss 1, Pp 1072-1089 (2023)
In this paper we use the fixed point index theory to study the existence of positive radial solutions for a system of boundary value problems with semipositone second order elliptic equations. Some appropriate concave and convex functions are utilize
Externí odkaz:
https://doaj.org/article/6a8cd9cfb76148f2b429472c3da0e617