Zobrazeno 1 - 10
of 1 017
pro vyhledávání: '"Fixed point method"'
Publikováno v:
Demonstratio Mathematica, Vol 57, Iss 1, Pp 222-224 (2024)
In this study, we introduce the following additive functional equation:g(λu+v+2y)=λg(u)+g(v)+2g(y)g\left(\lambda u+v+2y)=\lambda g\left(u)+g\left(v)+2g(y) for all λ∈C\lambda \in {\mathbb{C}}, all unitary elements u,vu,v in a unital Poisson C*{C}
Externí odkaz:
https://doaj.org/article/37f999baf76547f79c62d5f0f93aca67
Publikováno v:
AIMS Mathematics, Vol 9, Iss 11, Pp 30230-30262 (2024)
This study explored the time asymptotic behavior of the Schrödinger equation with an inhomogeneous energy-critical nonlinearity. The approach follows the concentration-compactness method due to Kenig and Merle. To address the primary challenge posed
Externí odkaz:
https://doaj.org/article/39acfff09db14540a4731e1d43d72d39
Autor:
Saleh Almuthaybiri, Tarek Saanouni
Publikováno v:
AIMS Mathematics, Vol 9, Iss 10, Pp 27871-27895 (2024)
This work studies a coupled non-linear Schrödinger system with a singular source term. First, we investigate the question of the local existence of solutions. Second, one proves the existence of global solutions which scatter in some Sobolev spaces.
Externí odkaz:
https://doaj.org/article/a225b07af66341e89f5cc05484912254
Publikováno v:
Partial Differential Equations in Applied Mathematics, Vol 12, Iss , Pp 100939- (2024)
In this study, we present a novel investigation into the dynamics of the Nipah virus through the lens of fractional differential equations (FDEs), employing the Atangana–Baleanu–Caputo fractional derivative (ABCFD) and the fixed-point approach (F
Externí odkaz:
https://doaj.org/article/341d10ba73414fdf866fe0877a3df1db
Autor:
Vasil Georgiev Angelov
Publikováno v:
AppliedMath, Vol 4, Iss 2, Pp 612-640 (2024)
The main purpose of the present paper is to prove the existence of periodic solutions of the three-body problem in the 3D Kepler formulation. We have solved the same problem in the case when the three particles are considered in an external inertial
Externí odkaz:
https://doaj.org/article/be4181653b5e4c4792c219279135f238
Autor:
Donganont Siriluk, Park Choonkil
Publikováno v:
Open Mathematics, Vol 22, Iss 1, Pp 3319-3327 (2024)
In this study, we solve the system of additive functional equations: h(x+y)=h(x)+h(y),g(x+y)=f(x)+f(y),2fx+y2=g(x)+g(y),\left\{\begin{array}{l}h\left(x+y)=h\left(x)+h(y),\\ g\left(x+y)=f\left(x)+f(y),\\ 2f\left(\frac{x+y}{2}\right)=g\left(x)+g(y),\en
Externí odkaz:
https://doaj.org/article/51945d9e2dbc481388a848c7d00b060b
Publikováno v:
Journal of Inequalities and Applications, Vol 2024, Iss 1, Pp 1-9 (2024)
Abstract In this paper, we solve the system of functional equations { f ( x + y ) + g ( y − x ) = 2 f ( x ) , g ( x + y ) − f ( y − x ) = 2 g ( y ) $$\begin{aligned} \textstyle\begin{cases} f(x+y)+g(y-x)=2f(x), \\ g(x+y)-f(y-x)=2g(y) \end{cases
Externí odkaz:
https://doaj.org/article/35136e478b8b4ff5b20eb22210bf13c4
Autor:
Erfanifar, Raziyeh, Hajarian, Masoud
Publikováno v:
Engineering Computations, 2023, Vol. 40, Issue 9/10, pp. 2862-2890.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/EC-07-2023-0322
Autor:
Ehsan Movahednia
Publikováno v:
Journal of Mahani Mathematical Research, Vol 13, Iss 1, Pp 197-209 (2023)
The main aim of this research is to investigate the stability of a functional equation that maintains the lattice structure in a uniformly complete unital Banach $f$-algebra. Through this inquiry, we can shed light on the behavior of this equation an
Externí odkaz:
https://doaj.org/article/acae49c6d4904d0f98e7490d4498659f