Zobrazeno 1 - 10
of 75
pro vyhledávání: '"Fishman, Dmytro"'
Segmentation is a crucial step in microscopy image analysis. Numerous approaches have been developed over the past years, ranging from classical segmentation algorithms to advanced deep learning models. While U-Net remains one of the most popular and
Externí odkaz:
http://arxiv.org/abs/2409.16940
Publikováno v:
In: Longo, L., Lapuschkin, S., Seifert, C. (eds) Explainable Artificial Intelligence. xAI 2024. Communications in Computer and Information Science, vol 2155. Springer, Cham
Deep learning is dramatically transforming the field of medical imaging and radiology, enabling the identification of pathologies in medical images, including computed tomography (CT) and X-ray scans. However, the performance of deep learning models,
Externí odkaz:
http://arxiv.org/abs/2404.12832
Metainformation is a common companion to biomedical images. However, this potentially powerful additional source of signal from image acquisition has had limited use in deep learning methods, for semantic segmentation in particular. Here, we incorpor
Externí odkaz:
http://arxiv.org/abs/2308.09411
Autor:
Fishman, Dmytro
Accurate information about protein content in the organism is instrumental for a better understanding of human biology and disease mechanisms. While the presence of certain types of proteins can be life-threatening, the abundance of others is an esse
Externí odkaz:
http://arxiv.org/abs/2201.06074
Autor:
Papkov, Mikhail, Roberts, Kenny, Madissoon, Lee Ann, Bayraktar, Omer, Fishman, Dmytro, Palo, Kaupo, Parts, Leopold
Biomedical images are noisy. The imaging equipment itself has physical limitations, and the consequent experimental trade-offs between signal-to-noise ratio, acquisition speed, and imaging depth exacerbate the problem. Denoising is, therefore, an ess
Externí odkaz:
http://arxiv.org/abs/2011.05105
Autor:
Walsh, Ian, Fishman, Dmytro, Garcia-Gasulla, Dario, Titma, Tiina, Pollastri, Gianluca, group, The ELIXIR Machine Learning focus, Harrow, Jen, Psomopoulos, Fotis E., Tosatto, Silvio C. E.
Modern biology frequently relies on machine learning to provide predictions and improve decision processes. There have been recent calls for more scrutiny on machine learning performance and possible limitations. Here we present a set of community-wi
Externí odkaz:
http://arxiv.org/abs/2006.16189
Publikováno v:
IEEE Transactions on Neural Networks and Learning Systems, 2020
Autonomous driving is of great interest to industry and academia alike. The use of machine learning approaches for autonomous driving has long been studied, but mostly in the context of perception. In this paper we take a deeper look on the so called
Externí odkaz:
http://arxiv.org/abs/2003.06404
Autor:
Ali, Mohammed A.S., Misko, Oleg, Salumaa, Sten-Oliver, Papkov, Mikhail, Palo, Kaupo, Fishman, Dmytro *, Parts, Leopold **
Publikováno v:
In SLAS Discovery October 2021 26(9):1125-1137
Autor:
Fishman, Dmytro1 (AUTHOR), Salumaa, Sten‐Oliver1 (AUTHOR), Majoral, Daniel1 (AUTHOR), Laasfeld, Tõnis1,2 (AUTHOR), Peel, Samantha3 (AUTHOR), Wildenhain, Jan3 (AUTHOR), Schreiner, Alexander4 (AUTHOR), Palo, Kaupo4 (AUTHOR), Parts, Leopold1,5 (AUTHOR) leopold.parts@ut.ee
Publikováno v:
Journal of Microscopy. Oct2021, Vol. 284 Issue 1, p12-24. 13p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.