Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Firmbach, Markus"'
Chaotic transport in Hamiltonian systems is often restricted due to the presence of partial barriers, leading to a limited flux between different regions in phase space. Typically, the most restrictive partial barrier in a 2D symplectic map is based
Externí odkaz:
https://tud.qucosa.de/id/qucosa%3A93072
https://tud.qucosa.de/api/qucosa%3A93072/attachment/ATT-0/
https://tud.qucosa.de/api/qucosa%3A93072/attachment/ATT-0/
Chaotic transport in Hamiltonian systems is often restricted due to the presence of partial barriers, leading to a limited flux between different regions in phase phase. Typically, the most restrictive partial barrier in a 2D symplectic map is based
Externí odkaz:
http://arxiv.org/abs/2210.09863
Autor:
Firmbach, Markus
Hamiltonian systems typically exhibit a mixed phase space in which regions of regular and chaotic dynamics coexist. The chaotic transport is restricted due to partial barriers, since they only allow for a small flux between different regions of phase
Externí odkaz:
https://tud.qucosa.de/id/qucosa%3A74077
https://tud.qucosa.de/api/qucosa%3A74077/attachment/ATT-0/
https://tud.qucosa.de/api/qucosa%3A74077/attachment/ATT-0/
Publikováno v:
Phys. Rev. E 99, 042213 (2019)
Nonlinear resonances in the classical phase space lead to a significant enhancement of tunneling. We demonstrate that the double resonance gives rise to a complicated tunneling peak structure. Such double resonances occur in Hamiltonian systems with
Externí odkaz:
http://arxiv.org/abs/1901.02692
Publikováno v:
Phys. Rev. E 98, 022214 (2018)
The dynamics in three-dimensional billiards leads, using a Poincar\'e section, to a four-dimensional map which is challenging to visualize. By means of the recently introduced 3D phase-space slices an intuitive representation of the organization of t
Externí odkaz:
http://arxiv.org/abs/1805.06823
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Firmbach M; Institut für Theoretische Physik and Center for Dynamics, Technische Universität Dresden, 01062 Dresden, Germany., Bäcker A; Institut für Theoretische Physik and Center for Dynamics, Technische Universität Dresden, 01062 Dresden, Germany., Ketzmerick R; Institut für Theoretische Physik and Center for Dynamics, Technische Universität Dresden, 01062 Dresden, Germany.
Publikováno v:
Chaos (Woodbury, N.Y.) [Chaos] 2023 Jan; Vol. 33 (1), pp. 013125.