Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Fino, Raphaël"'
Autor:
Fino, Raphaël
We determine the non-compact form of Vishik's Elementary Discrete Invariant for quadrics.
Externí odkaz:
http://arxiv.org/abs/1712.06660
Autor:
Fino, Raphaël
Soient $X$ et $Y$ des variétés au dessus d’un corps $F$. Dans de nombreuses situations, il s’avère important de savoir si un cycle algébrique modulo équivalence rationnelle y sur Y, défini au dessus du corps des fonctions $F(X)$ de $X$, est
Externí odkaz:
http://www.theses.fr/2014PA066231/document
Autor:
Fino, Raphaël
We prove a result comparing the rationality of some elementary algebraic cycles introduced by Alexander Vishik, defined on orthogonal grassmannians, with the rationality of some algebraic cycles defined on fiber products of the corresponding quadric.
Externí odkaz:
http://arxiv.org/abs/1611.04523
Autor:
Fino, Raphaël
Publikováno v:
Pacific J. Math. 300 (2019) 375-404
We develop the version of the $J$-invariant for hermitian forms over quadratic extensions in a similar way Alexander Vishik did it for quadratic forms. This discrete invariant contains informations about rationality of algebraic cycles on the maximal
Externí odkaz:
http://arxiv.org/abs/1602.04079
Autor:
Fino, Raphaël
In this note we prove a result comparing rationality of algebraic cycles over the function field of a $SL_1(A)$-torsor for a central simple algebra $A$ and over the base field.
Comment: 7 pages
Comment: 7 pages
Externí odkaz:
http://arxiv.org/abs/1409.2029
Autor:
Fino, Raphael
In this article we prove a result comparing rationality of algebraic cycles over the function field of a projective homogeneous variety under a linear algebraic group of type $F_4$ or $E_8$ and over the base field, which can be of any characteristic.
Externí odkaz:
http://arxiv.org/abs/1306.1180
Autor:
Fino, Raphaël
In this article we prove a result comparing rationality of integral algebraic cycles over the function field of a quadric and over the base field. This is an integral version of the result known for coefficients modulo 2. Those results have already b
Externí odkaz:
http://arxiv.org/abs/1203.2478
Autor:
Fino, Raphael
In this article we prove certain results comparing rationality of algebraic cycles over the function field of a quadric and over the base field. Those results have already been proved by Alexander Vishik in the case of characteristic 0, which allowed
Externí odkaz:
http://arxiv.org/abs/1111.4143
Autor:
Fino, Raphaël
Publikováno v:
In Journal of Algebra 15 October 2015 440:594-601
Autor:
Fino, Raphaël
Publikováno v:
In Journal of Pure and Applied Algebra September 2013 217(9):1702-1710