Zobrazeno 1 - 10
of 176
pro vyhledávání: '"Finite element space"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Stevenson, Rob
Publikováno v:
Mathematics of Computation, 2003 Jan 01. 72(241), 55-81.
Externí odkaz:
https://www.jstor.org/stable/4099983
Multilevel correction goal-oriented adaptive finite element method for semilinear elliptic equations
Publikováno v:
Applied Numerical Mathematics. 172:224-241
In this study, a multilevel correction-type goal-oriented adaptive finite element method is designed for semilinear elliptic equations. Concurrently, the corresponding convergence property is theoretically proved. In the novel goal-oriented adaptive
Autor:
Di Yang, Yinnian He
Publikováno v:
Computers & Mathematics with Applications. 97:175-206
In this article, using the weighted discrete least-squares, we propose a patch reconstruction finite element space with only one degree of freedom per element. As the approximation space, it is applied to the discontinuous Galerkin methods with the u
Publikováno v:
Applied Numerical Mathematics. 159:174-189
In Cai, He, and Zhang (2017), we studied an improved Zienkiewicz-Zhu (ZZ) a posteriori error estimator for conforming linear finite element approximation to diffusion problems. The estimator is more efficient than the original ZZ estimator for non-sm
Autor:
M. Baris Otus, Michael Neilan
Publikováno v:
SIAM Journal on Numerical Analysis. 59:1090-1116
We construct and analyze an isoparametric finite element pair for the Stokes problem in two dimensions. The pair is defined by mapping the Scott--Vogelius finite element space via a Piola transform...
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Applicable Analysis. 101:2197-2216
In this paper, we present a nonconforming immersed finite element method for solving elliptic optimal control problems with interfaces. The immersed finite element space is constructed based on the...
Publikováno v:
Journal of Applied Analysis & Computation. 10:1433-1442
This article is devoted to the a priori error estimates of the fully discrete Crank-Nicolson approximation for the linear parabolic interface problem via weak Galerkin finite element methods (WG-FEM). All the finite element functions are discontinuou
Autor:
Vadim Bobrovskiy, Juan Galvis, Alexey Kaplin, Alexander Sinitsyn, Marco Tognoli, Paolo Trucco
Publikováno v:
Mathematical Modelling of Natural Phenomena. 17:14
In the study, we address the mathematical problem of proton migration in the Earth’s mantle and suggest a prototype for exploring the Earth’s interior to map the effects of superionic proton conduction. The problem can be mathematically solved by