Zobrazeno 1 - 10
of 75
pro vyhledávání: '"Finashin, S."'
Autor:
Finashin, S., Kharlamov, V.
Publikováno v:
International Mathematics Research Notices 2012
We show that a generic real projective n-dimensional hypersurface of degree 2n-1 contains "many" real lines, namely, not less than (2n-1)!!, which is approximately the square root of the number of complex lines. This estimate is based on the interpre
Externí odkaz:
http://arxiv.org/abs/1201.2897
Autor:
Finashin, S., Kharlamov, V.
A solution to the problem of topological classification of real cubic fourfolds is presented. It is shown that the real locus of a real non-singular cubic fourfold is obtained from a projective 4-space either by adding several trivial one- and two-ha
Externí odkaz:
http://arxiv.org/abs/0906.1480
Autor:
Finashin, S., Kharlamov, V.
Publikováno v:
Arnold Mathematical Journal; Jun2024, Vol. 10 Issue 2, p155-169, 15p
Autor:
Finashin, S., Kharlamov, V.
Publikováno v:
Compositio Math. 145 (2009) 1277-1304
According to our previous results, the conjugacy class of the involution induced by the complex conjugation in the homology of a real non-singular cubic fourfold determines the fourfold up to projective equivalence and deformation. Here, we show how
Externí odkaz:
http://arxiv.org/abs/0804.4882
Autor:
Finashin, S., Kharlamov, V.
We study real nonsingular projective cubic fourfolds up to deformation equivalence combined with projective equivalence and prove that they are classified by the conjugacy classes of involutions induced by the complex conjugation in the middle homolo
Externí odkaz:
http://arxiv.org/abs/math/0607137
Autor:
Finashin, S.
Consider a real algebraic variety, $\R X$, of dimension $d$. If its complexification, $\C X$, is a rational homology manifold (at least in a neighborhood of $\R X$), then the intersection form in $\C X$ defines a bilinear form in $d$-homologies of $\
Externí odkaz:
http://arxiv.org/abs/math/9902022
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Finashin, S., Kharlamov, V.
Publikováno v:
Journal of the Institute of Mathematics of Jussieu; Jan2024, Vol. 23 Issue 1, p123-148, 26p
Autor:
Finashin, S.
The quotients $Y=X/conj$ by the complex conjugation $conj\: X\to X$ for complex rational and Enriques surfaces $X$ defined over $\R$ are shown to be diffeomorphic to connected sums of $\barCP2$, whenever $Y$ are simply connected.
Comment: 7 page
Comment: 7 page
Externí odkaz:
http://arxiv.org/abs/dg-ga/9603004
Autor:
Finashin, S.
Quotients $Y=X/conj$ by the complex conjugation $conj\: X\to X$ for complex surfaces $X$ defined over $\R$ tend to be completely decomposable when they are simply connected, i.e., split into connected sums $\#_n CP^2\#_m\barCP^2$ if $w_2(Y)\ne0$, or
Externí odkaz:
http://arxiv.org/abs/dg-ga/9512005