Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Filomena Feo"'
Autor:
Filomena Feo, Gabriella Paderni
Publikováno v:
Electronic Journal of Differential Equations, Vol 2019, Iss 89,, Pp 1-15 (2019)
In this article we prove a Logarithmic Sobolev type inequality and a Poincare type inequality for functions in the anisotropic Gaussian Sobolev space. As an application we study a class of equations, whose anisotropic elliptic condition is given i
Externí odkaz:
https://doaj.org/article/ce1705dd511d44adb7f53b6229702086
Autor:
Giuseppina Di Blasio, Filomena Feo
Publikováno v:
Le Matematiche, Vol 61, Iss 2, Pp 245-274 (2006)
We prove existence and regularity results for weak solutions to nonlinear elliptic equations.
Externí odkaz:
https://doaj.org/article/dbd13bc19cb147859954e6cb7cdc9e32
Publikováno v:
Journal of differential equations
269 (2020): 4853–4883. doi:10.1016/j.jde.2020.03.049
info:cnr-pdr/source/autori:Angela Alberico, Giuseppina di Blasio, Filomena Feo/titolo:An eigenvalue problem for the anisotropic \Phi-Laplacian/doi:10.1016%2Fj.jde.2020.03.049/rivista:Journal of differential equations (Print)/anno:2020/pagina_da:4853/pagina_a:4883/intervallo_pagine:4853–4883/volume:269
269 (2020): 4853–4883. doi:10.1016/j.jde.2020.03.049
info:cnr-pdr/source/autori:Angela Alberico, Giuseppina di Blasio, Filomena Feo/titolo:An eigenvalue problem for the anisotropic \Phi-Laplacian/doi:10.1016%2Fj.jde.2020.03.049/rivista:Journal of differential equations (Print)/anno:2020/pagina_da:4853/pagina_a:4883/intervallo_pagine:4853–4883/volume:269
We study an eigenvalue problem involving a fully anisotropic elliptic differential operator in arbitrary Orlicz-Sobolev spaces. The relevant equations are associated with constrained minimization problems for integral functionals depending on the gra
Publikováno v:
Israel Journal of Mathematics. 233:297-310
In the present paper we prove some uniqueness results for weak solutions to a class of problems, whose prototype is $$\begin{cases}-\rm{div} & ((\varepsilon+|\triangledown{u}|^2)\frac{p-2}{2}\triangledown{u}\varphi)=f\varphi\;\;\;\;\;\rm{in}\;\;\Omeg
We study an anisotropic, possibly non-homogeneous version of the evolution $p$-Laplacian equation when fast diffusion holds in all directions. We develop the basic theory and prove symmetrization results from which we derive $L^1$ to $L^\infty$ estim
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::167c4230bccc466e52b453f7be94e594
We prove the existence of self-similar fundamental solutions (SSF) of the anisotropic porous medium equation in the suitable fast diffusion range. Each of such SSF solutions is uniquely determined by its mass. We also obtain the asymptotic behaviour
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2eb363528a832efbfee2c5afee9c5350
http://arxiv.org/abs/2007.00122
http://arxiv.org/abs/2007.00122
Autor:
Olivier Guibé, Filomena Feo
We consider a class of nonlinear elliptic problems whose prototype involves a coefficients matrix blowing up for a finite value m of the unknown u. Since datum is in $$L^1$$ , a suitable notion of renormalized solutions is introduced taking into acco
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3e6a0fdafdf68b4078cabd4cb8cf1f91
http://hdl.handle.net/11367/86511
http://hdl.handle.net/11367/86511
Publikováno v:
Feo, F, Huang, Y & Volzone, B 2019, ' Long-time asymptotics for a 1D nonlocal porous medium equation with absorption or convection ', Communications in Contemporary Mathematics . https://doi.org/10.1142/S0219199719500159
In this paper, the long-time asymptotic behaviors of one-dimensional porous medium equations with a fractional pressure and absorption or convection are studied. In the parameter regimes when the nonlocal diffusion is dominant, the entropy method is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ee288d7fdbfe05179c651d4c1978e3e3
http://hdl.handle.net/11367/72311
http://hdl.handle.net/11367/72311
Autor:
Filomena Feo, Olivier Guibé
Publikováno v:
Journal of Differential Equations
Journal of Differential Equations, Elsevier, 2017, 262 (3), pp.1777-1798. ⟨10.1016/j.jde.2016.10.029⟩
Journal of Differential Equations, Elsevier, 2017, 262 (3), pp.1777-1798. ⟨10.1016/j.jde.2016.10.029⟩
We consider a class of elliptic equations of the type − div ( a ( x , u , ∇ u ) ) = f − div g with Dirichlet boundary conditions and with f belonging to L 1 ( Ω ) . Using the framework of renormalized solutions we prove the uniqueness of a sol
We derive some anisotropic Sobolev inequalities in R n with a monomial weight in the general setting of rearrangement invariant spaces. Our starting point is to obtain an integral oscillation inequality in multiplicative form.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cfef5fb980850ba89a7b2fb4deafd9e9