Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Filippo Giuliani"'
Publikováno v:
Rendiconti Lincei - Matematica e Applicazioni. 32:149-166
The aim of this note is to present the recent results in [16] where we provide the existence of solutions of some nonlinear resonant PDEs on the 2-dimensional torus exchanging energy among Fourier modes in a \emph{chaotic-like} way. We say that a tra
Publikováno v:
Dynamics of Partial Differential Equations. 16:25-94
We prove reducibility of a class of quasi-periodically forced linear equations of the form \[ \partial_tu-\partial_x\circ (1+a(\omega t, x))u+\mathcal{Q}(\omega t)u=0,\quad x\in\mathbb{T}:=\mathbb{R}/2\pi\mathbb{Z}, \] where $u=u(t,x)$, $a$ is a smal
Autor:
Filippo Giuliani, Marcel Guardia
Publikováno v:
Nonlinear Analysis. 220:112865
We consider the cubic nonlinear Schr��dinger equation on $2$-dimensional irrational tori. We construct solutions which undergo growth of Sobolev norms. More concretely, for every $s>0$, $s\neq 1$ and almost every choice of spatial periods we cons
Publikováno v:
Communications in Mathematical Physics
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
We consider the nonlinear cubic Wave, the Hartree and the nonlinear cubic Beam equations on T2 and we prove the existence of different types of solutions which exchange energy between Fourier modes in certain time scales. This exchange can be conside
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1351839967fd9eb1a2f971bb8778ead6
https://hdl.handle.net/2117/363923
https://hdl.handle.net/2117/363923
Autor:
Filippo Giuliani
Publikováno v:
American Institut of Mathematical Science
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
In this paper we consider two classes of resonant Hamiltonian PDEs on the circle with non-convex (respect to actions) first order resonant Hamiltonian. We show that, for appropriate choices of the nonlinearities we can find time-independent linear po
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0e8deff9406f05e13177598b0c948309
http://hdl.handle.net/11311/1203008
http://hdl.handle.net/11311/1203008
Autor:
Roberto Feola, Filippo Giuliani
We present the recent result [8] concerning the existence of quasi-periodic in time traveling waves for the 2d pure gravity water waves system in infinite depth. We provide the first existence result of quasi-periodic water waves solutions bifurcatin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6babdcc5194e02563ffffc70eda7310e
Publikováno v:
Journal of Functional Analysis. 279:108542
Publikováno v:
RECERCAT (Dipòsit de la Recerca de Catalunya)
Recercat. Dipósit de la Recerca de Catalunya
instname
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Recercat. Dipósit de la Recerca de Catalunya
instname
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
We consider the dispersive Degasperis–Procesi equation u t − u x x t − c u x x x + 4 c u x − u u x x x − 3 u x u x x + 4 u u x = 0 with c ∈ R ∖ { 0 } . In [15] the authors proved that this equation possesses infinitely many conserved qu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::673deccb58534df19ebb8b4a41ccc9eb
http://arxiv.org/abs/1802.00035
http://arxiv.org/abs/1802.00035
Autor:
Filippo Giuliani
We prove the existence of Cantor families of small amplitude, linearly stable, quasi-periodic solutions of quasi-linear autonomous Hamiltonian generalized KdV equations. We consider the most general quasi-linear quadratic nonlinearity. The proof is b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d38c716741515aa55f15e60646522e38