Zobrazeno 1 - 10
of 105
pro vyhledávání: '"Filippo Bracci"'
Publikováno v:
Mathematische Zeitschrift. 301:2011-2035
Let $D\subset \mathbb C^n$ be a bounded domain. A pair of distinct boundary points $\{p,q\}$ of $D$ has the visibility property provided there exist a compact subset $K_{p,q}\subset D$ and open neighborhoods $U_p$ of $p$ and $U_q$ of $q$, such that t
Publikováno v:
The Journal of Geometric Analysis. 31:11292-11311
In this paper we study the following "slice rigidity property": given two Kobayashi complete hyperbolic manifolds $M, N$ and a collection of complex geodesics $\mathcal F$ of $M$, when is it true that every holomorphic map $F:M\to N$ which maps isome
In this paper we introduce, via a Phragmen-Lindel\"of type theorem, a maximal plurisubharmonic function in a strongly pseudoconvex domain. We call such a function the {\sl pluricomplex Poisson kernel} because it shares many properties with the classi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e5e04782b2ca4a08228ed6b1cf4bcf94
http://hdl.handle.net/2108/289258
http://hdl.handle.net/2108/289258
Publikováno v:
Mathematische Annalen
We study the homeomorphic extension of biholomorphisms between convex domains in $\mathbb C^d$ without boundary regularity and boundedness assumptions. Our approach relies on methods from coarse geometry, namely the correspondence between the Gromov
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::084956897abb80e82b789b9831f08df5
http://hdl.handle.net/2108/233076
http://hdl.handle.net/2108/233076
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030367817
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3eabdd8ee438ea20afb6a45914a88744
https://doi.org/10.1007/978-3-030-36782-4_10
https://doi.org/10.1007/978-3-030-36782-4_10
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030367817
In this chapter we study the boundary extension of the iterates of a semigroup and of the associated Koenigs function. After studying the impression and the principal part of prime ends of domains defined by Koenigs functions, we prove that every Koe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::886a9c271eaf868e49be2caecb3d0032
https://doi.org/10.1007/978-3-030-36782-4_11
https://doi.org/10.1007/978-3-030-36782-4_11
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030367817
In this chapter we introduce the last two tools we need in our study of semigroups throughout the book. The first one comes from potential theory: the harmonic measure of a simply connected domain in \(\mathbb {C}\) related to a subset of its boundar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::132d89df04929a997d5df6770b935311
https://doi.org/10.1007/978-3-030-36782-4_7
https://doi.org/10.1007/978-3-030-36782-4_7
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030367817
The aim of this chapter is to study the rate, or speed, of convergence of orbits of non-elliptic semigroups to the Denjoy-Wolff point, considering both “orthogonal speed” and “total speed” as introduced in Definition 6.5.6. As we see, in the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::71166150f32f8c2a82b951211cbecdbc
https://doi.org/10.1007/978-3-030-36782-4_16
https://doi.org/10.1007/978-3-030-36782-4_16
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030367817
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6cdeeabc9377a645a745c372199de7da
https://doi.org/10.1007/978-3-030-36782-4_3
https://doi.org/10.1007/978-3-030-36782-4_3
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030367817
In this chapter we introduce the primary subject of our study: continuous one-parameter semigroups of holomorphic self-maps of the unit disc. We establish their main basic properties and extend to this context the Denjoy-Wolff Theorem. Then we charac
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b769b26ac307fbe2dde902ccdc2068a5
https://doi.org/10.1007/978-3-030-36782-4_8
https://doi.org/10.1007/978-3-030-36782-4_8