Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Fikret Gölgeleyen"'
Autor:
Fikret Gölgeleyen, Elif Özsoy Çakır
Publikováno v:
Düzce Üniversitesi Bilim ve Teknoloji Dergisi, Vol 11, Iss 2, Pp 1014-1024 (2023)
Bu çalışmada saçılım terimi içeren durağan olmayan bir kinetik denklem için bazı düz ve ters problemler ele alınmıştır. Bu problemlerin aralarındaki ilişki tartışılmış ve çözümlerinin tekliği araştırılmıştır.
Externí odkaz:
https://doaj.org/article/e94220f60b6e4d94888654a544ee0e7e
Autor:
Elif ÖZSOY ÇAKIR, Fikret GÖLGELEYEN
Publikováno v:
Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 11:1014-1024
Bu çalışmada saçılım terimi içeren durağan olmayan bir kinetik denklem için bazı düz ve ters problemler ele alınmıştır. Bu problemlerin aralarındaki ilişki tartışılmış ve çözümlerinin tekliği araştırılmıştır.
Autor:
Masahiro Yamamoto, Fikret Gölgeleyen
The aim of this article is to investigate the uniqueness of solution of an inverse problem for ultrahyperbolic equations. We first reduce the inverse problem to a Cauchy problem for an integro-differential equation and then by using a pointwise Carle
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4ffc48da5c64ebf53e80885faefb4c45
http://arxiv.org/abs/1909.01399
http://arxiv.org/abs/1909.01399
We consider the transport equation $\ppp_tu(x,t) + (H(x)\cdot \nabla u(x,t)) + p(x)u(x,t) = 0$ in $\OOO \times (0,T)$ where $\OOO \subset \R^n$ is a bounded domain, and discuss two inverse problems which consist of determining a vector-valued functio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::467714ff6e7e0f97d736e88c1e6e5967
http://hdl.handle.net/11588/839046
http://hdl.handle.net/11588/839046
Autor:
Fikret Gölgeleyen, Özlem Kaytmaz
In this article, we first establish a global Carleman estimate for an ultrahyperbolic Schrödinger equation. Next, we prove Hölder stability for the inverse problem of determining a coefficient or a source term in the equation by some lateral bounda
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2963e23169562ca31f955d395072f35d
https://hdl.handle.net/20.500.12628/3943
https://hdl.handle.net/20.500.12628/3943
Autor:
Masahiro Yamamoto, Fikret Gölgeleyen
Publikováno v:
SIAM Journal on Mathematical Analysis. 48:2319-2344
In this article, we consider inverse problems of determining a source term and a coefficient of a first-order partial differential equation and prove conditional stability estimates with minimum boundary observation data and a relaxed condition on th
In this paper, we discuss the uniqueness in an integral geometry problem along the straight lines in a strongly convex domain. Our problem is related with the problem of finding a Riemannian metric by the distances between all pairs of the boundary p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c168c7b086b74687723de22f4d5e8fd9
http://arxiv.org/abs/1502.05152
http://arxiv.org/abs/1502.05152
Autor:
Masahiro Yamamoto, Fikret Gölgeleyen
In this paper, we discuss an inverse problem for the Vlasov-Poisson system. We prove local uniqueness and stability theorems by using the method in Anikonov and Amirov [Dokl. Akad. Nauk SSSR 272 (1983), 1292-1293] under the specular reflection bounda
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d9900c4e8341f627bc43bfee2f5e0fa9
https://hdl.handle.net/20.500.12628/4230
https://hdl.handle.net/20.500.12628/4230
Autor:
Fikret Gölgeleyen, Masahiro Yamamoto
In this paper, the authors consider inverse problems of determining a coefficient or a source term in an ultrahyperbolic equation by some lateral boundary data. The authors prove Hölder estimates which are global and local and the key tool is Carlem
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fafc86c5e0346a2cad96b568ed5641e8
https://hdl.handle.net/20.500.12628/7630
https://hdl.handle.net/20.500.12628/7630
Autor:
FIKRET GÖLGELEYEN, MASAHIRO YAMAMOTO
Publikováno v:
SIAM Journal on Mathematical Analysis; 2016, Vol. 48 Issue 4, p2319-2344, 26p