Zobrazeno 1 - 10
of 216
pro vyhledávání: '"Field of fractions"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Mihran Papikian, Sumita Garai
Publikováno v:
Journal of Number Theory. 232:155-176
Let A = F q [ T ] be the polynomial ring over F q , and F be the field of fractions of A. Let ϕ be a Drinfeld A-module of rank r ≥ 2 over F. For all but finitely many primes p ◁ A , one can reduce ϕ modulo p to obtain a Drinfeld A-module ϕ ⊗
Autor:
Anastasia Stavrova
Publikováno v:
Indagationes Mathematicae. 33:322-333
We apply the techniques developed by I. Panin for the proof of the equicharacteristic case of the Serre–Grothendieck conjecture for isotropic reductive groups (Panin et al., 2015; Panin, 2019) to obtain similar injectivity and A 1 -invariance theor
Autor:
Mansour Ghadiri
Publikováno v:
Journal of the Indonesian Mathematical Society. :75-89
A larger class of algebraic hyperstructures satisfying the ring (field)-like axioms is the class of H v -rings ( H v -fields). In this paper, we define the H v -integral domain and introduce the H v -field of fractions of an H v -integral domain. Als
Publikováno v:
Journal of Algebra. 566:405-434
We use the gluing construction introduced by Jia Huang to explore the rings of invariants for a range of modular representations. We construct generating sets for the rings of invariants of the maximal parabolic subgroups of a finite symplectic group
Publikováno v:
Comptes Rendus. Mathématique. 358:785-790
Let $H$ be a skew field of finite dimension over its center $k$. We solve the Inverse Galois Problem over the field of fractions $H(X)$ of the ring of polynomial functions over $H$ in the variable $X$, if $k$ contains an ample field.
Autor:
George J. McNinch
Publikováno v:
Algebras and Representation Theory. 24:1479-1522
Let ${\mathcal {K}}$ be a local field – i.e. the field of fractions of a complete DVR ${\mathcal {A}}$ whose residue field k has characteristic p > 0 – and let G be a connected, absolutely simple algebraic ${\mathcal {K}}$ -group G which splits o
Autor:
Piotr Krasoń, Wojciech Bondarewicz
Publikováno v:
Acta Arithmetica. 195:109-129
In this paper we investigate a local to global principle for Mordell-Weil group defined over a ring of integers ${\cal O}_K$ of $t$-modules that are products of the Drinfeld modules ${\widehat\varphi}={\phi}_{1}^{e_1}\times \dots \times {\phi}_{t}^{e
Autor:
Klein, Abraham A.
Publikováno v:
Proceedings of the American Mathematical Society, 1972 Jul 01. 34(1), 38-42.
Externí odkaz:
https://www.jstor.org/stable/2037891
Publikováno v:
Essen, A. van den (ed.), Polynomial Automorphisms and the Jacobian Conjecture: New Results from the Beginning of the 21st Century, pp. 43-64
Frontiers in Mathematics ISBN: 9783030605339
Frontiers in Mathematics ISBN: 9783030605339
Item does not contain fulltext Let k be a field, x = k[x1, …, xn] the polynomial ring in n variables over k, k(x) the field of fractions of k[x], and L a subfield of k(x) containing k. Hilbert’s fourteenth problem asks whether the k-algebra L ∩
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d94b324594c4bc170d195c33a9b66e3a
https://repository.ubn.ru.nl/handle/2066/234021
https://repository.ubn.ru.nl/handle/2066/234021