Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Fiacchi, Matteo"'
Autor:
Arosio, Leandro, Fiacchi, Matteo
Rudin's version of the classical Julia-Wolff-Carath\'eodory theorem is a cornerstone of holomorphic function theory in the unit ball of $\mathbb{C}^d$. In this paper we obtain a complete generalization of Rudin's theorem for a holomorphic map $f\colo
Externí odkaz:
http://arxiv.org/abs/2407.09199
Autor:
Fiacchi, Matteo
Publikováno v:
Mathematische Zeitschrift, 308, 24, (2024)
In this paper we study the hyperbolicity in the sense of Gromov of domains in $\mathbb{R}^d$ $(d\geq3)$ with respect to the minimal metric introduced by Forstneri\v{c} and Kalaj. In particular, we prove that every bounded strongly minimally convex do
Externí odkaz:
http://arxiv.org/abs/2310.14742
Publikováno v:
Advances in Mathematics, 2024
We study the interplay between the backward dynamics of a non-expanding self-map $f$ of a proper geodesic Gromov hyperbolic metric space $X$ and the boundary regular fixed points of $f$ in the Gromov boundary. To do so, we introduce the notion of sta
Externí odkaz:
http://arxiv.org/abs/2210.17480
Publikováno v:
Journal of Geometric Analysis, 2023, 33(8), 257
We show that Worm domains are not Gromov hyperbolic with respect to the Kobayashi distance.
Externí odkaz:
http://arxiv.org/abs/2208.02062
Publikováno v:
In Advances in Mathematics March 2024 439
Publikováno v:
Mathematische Annalen, 2022
We highlight a condition, the approaching geodesics property, on a proper geodesic Gromov hyperbolic metric space, which implies that the horofunction compactification is topologically equivalent to the Gromov compactification. It is known that this
Externí odkaz:
http://arxiv.org/abs/2012.09848
Autor:
Fiacchi, Matteo
Publikováno v:
Mathematische Annalen, 2022, 382(1-2), pp. 37-68
We prove that every bounded smooth domain of finite d'Angelo type in $\mathbb{C}^2$ endowed with the Kobayashi distance is Gromov hyperbolic and its Gromov boundary is canonically homeomorphic to the Euclidean boundary. We also show that any domain i
Externí odkaz:
http://arxiv.org/abs/2004.09232
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Fiacchi, Matteo
Publikováno v:
Annali di Matematica Pura ed Applicata, 2020, 199(2), pp. 795-808
We give conditions in order to approximate locally uniformly holomorphic covering mappings of the unit ball of $\mathbb{C}^n$ with respect to an arbitrary norm, with entire holomorphic covering mappings. The results rely on a generalization of the Lo
Externí odkaz:
http://arxiv.org/abs/1810.01782
Autor:
Fiacchi, Matteo
Publikováno v:
Springer INdAM Series, 2017, 26, pp. 1-10
In this paper we show the equivalence among three conjectures (and related open questions), namely, the embedding of univalent maps of the unit ball into Loewner chains, the approximation of univalent maps with entire univalent maps and the immersion
Externí odkaz:
http://arxiv.org/abs/1710.02087