Zobrazeno 1 - 10
of 72
pro vyhledávání: '"Feuto, Justin"'
Autor:
Dje, Jean-Marcel Tanoh, Feuto, Justin
In this paper, we give Poisson and Cauchy representation theorems in Hardy-Orlicz spaces on the upper complex half-plane. We use these theorems for the construction of dual spaces of certain Hardy-Orlicz spaces and also for the characterization of so
Externí odkaz:
http://arxiv.org/abs/2308.01820
Autor:
Dakoury, Martial, Feuto, Justin
We use a molecular characterization of generalized Hardy-Morrey spaces, to provide a norm controls of Calder\'on-Zygmund operators and their associated commutators in the above mention spaces.
Comment: 20 pages
Comment: 20 pages
Externí odkaz:
http://arxiv.org/abs/2304.14903
We establish some new properties of the Dunkl-Wiener amalgam spaces defined on the real line. These results allow us to obtain the boundedness of Dunkl-type fractional integral and fractional maximal operators in the Dunkl-Fofana spaces.
Comment
Comment
Externí odkaz:
http://arxiv.org/abs/2208.03821
In this paper, thanks to the generalizations of the dual spaces of the Hardy-amalgam spaces $\mathcal H^{(q,p)}$ and $\mathcal{H}_{\mathrm{loc}}^{(q,p)}$ for $0
Externí odkaz:
http://arxiv.org/abs/2103.04106
In this paper, carrying on with our study of the Hardy-amalgam spaces $\mathcal H^{(q,p)}$ and $\mathcal{H}_{\mathrm{loc}}^{(q,p)}$ ($0
Externí odkaz:
http://arxiv.org/abs/2008.07002
Autor:
Nagacy, Pokou, Feuto, Justin
We generalize Wiener amalgam spaces by using Dunkl translation instead of the classical one, and we give some relationship between these spaces, Dunkl-Lebesgue spaces and Dunkl-Morrey spaces. We prove that the Hardy-Litlewood maximal function associa
Externí odkaz:
http://arxiv.org/abs/2005.12748
Autor:
Feichtinger, Hans Georg, Feuto, Justin
It is the purpose of this paper to give a characterization of the pre-dual of the spaces introduced by I.~Fofana on the basis of Wiener amalgam spaces. Those spaces have a specific dilation behaviour similar to the spaces $L^\alpha(\mathbb R^d)$. The
Externí odkaz:
http://arxiv.org/abs/1903.10191
Duals of Hardy-amalgam spaces $\mathcal{H}_{\mathrm{loc}}^{(q,p)}$ and Pseudo-differential operators
In this paper, we carry on with the study of the Hardy-Amalgam spaces $\mathcal{H}_{\mathrm{loc}}^{(q,p)}$ spaces introduced in \cite{AbFt}. We investigate their dual spaces and establish some results of boundedness of pseudo-differential operators i
Externí odkaz:
http://arxiv.org/abs/1803.03595
We characterize the dual spaces of the generalized Hardy spaces defined by replacing Lebesgue quasi-norms by Wiener amalgam ones. In these generalized Hardy spaces, we prove that some classical linear operators such as Calder\'on-Zygmund, convolution
Externí odkaz:
http://arxiv.org/abs/1803.03561
We give an atomic decomposition of closed forms on R n , the coefficients of which belong to some Hardy space of Musielak-Orlicz type. These spaces are natural generalizations of weighted Hardy-Orlicz spaces, when the Orlicz function depends on the s
Externí odkaz:
http://arxiv.org/abs/1601.03856