Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Fethi Mahmoudi"'
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-17 (2024)
Abstract In this paper, we focus on studying a fractional Schrödinger equation of the form { ( − Δ ) s u + V ( x ) u = f ( x , u ) in Ω , u > 0 in Ω , u = 0 in R n ∖ Ω , $$ \textstyle\begin{cases}(-\Delta )^{s}u+V(x)u = f(x,u) &\text{in }\Om
Externí odkaz:
https://doaj.org/article/eded5d61775540f9bfd62b2c9fc7e61d
Autor:
Fethi Mahmoudi
Publikováno v:
Electronic Journal of Differential Equations, Vol 2006, Iss 71, Pp 1-17 (2006)
Riviere [11] proved an energy quantization for Yang-Mills fields defined on $n$-dimensional Riemannian manifolds, when $n$ is larger than the critical dimension 4. More precisely, he proved that the defect measure of a weakly converging sequence of Y
Externí odkaz:
https://doaj.org/article/c944f4291c284aa0ad96131567967d6d
Autor:
Salem Rebhi, Fethi Mahmoudi
Publikováno v:
Nonlinear Differential Equations and Applications NoDEA. 30
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 40:2367-2391
Given a smooth bounded domain \begin{document}$ \Omega \subset \mathbb {R}^n $\end{document} and consider the problem \begin{document}$ \left\{\begin{array} {cccccc} - \Delta u = |u|^p - \sigma &\hbox{in } \Omega \\ \dfrac{\partial u}{\partial \nu} =
Publikováno v:
Annales Henri Poincaré. 19:3581-3633
Given a smooth bounded domain $$\Omega \subset \mathbb {R}^2 $$ , we consider the problem $$\begin{aligned} \left\{ \begin{array} {cccccc} - \Delta u = |u|^p - s\,\psi &{}\hbox {in } \ \Omega \\ \\ \dfrac{\partial u}{\partial \nu } = 0 &{}\hbox {on}\
Publikováno v:
Proceedings of the London Mathematical Society. 118:379-415
Publikováno v:
Communications on Pure & Applied Analysis. 17:2063-2084
Let \begin{document} $(M, g)$ \end{document} be a smooth compact riemannian manifold of dimension \begin{document} $N≥2$ \end{document} with constant scalar curvature. We are concerned with the following elliptic problem \begin{document}$\begin{eqn
Publikováno v:
Nonlinear Analysis: Theory, Methods and Applications
Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2016, 131, pp. 300-324
Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2016, 131, pp.300-324
Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2016, 131, pp. 300-324
Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2016, 131, pp.300-324
We construct a periodic solution to the semilinear heat equation with power nonlinearity, in one space dimension, which blows up in finite time $T$ only at one blow-up point. We also give a sharp description of its blow-up profile. The proof relies o
Publikováno v:
Discrete and Continuous Dynamical Systems. 36:3035-3076
In this paper we consider the following problem \begin{eqnarray} \label{abstract} \quad \left\{ \begin{array}{ll}-\Delta u +u= u^{{n-k+2\over n-k-2} \pm\epsilon} & \mbox{ in } \Omega \\ u>0& \mbox{ in }\Omega            (0.1)\
Publikováno v:
Calculus of Variations and Partial Differential Equations. 58
The goal of this paper is to study the following non-local superlinear elliptic problem $$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} (-\Delta )^s u=|u|^p-\sigma \phi _1 &{}\hbox {in } \Omega ,\\ u=0 &{}\hbox {in } {\mathbb {R}}^N{\setminus }\