Zobrazeno 1 - 10
of 1 987
pro vyhledávání: '"Ferri, A. L."'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Physica A Vol. 511, 139 (2018)
Verlinde conjectured that gravitation is an emergent entropic force. This surprising conjecture was proved in [Physica A {\bf 505} (2018) 190] within a purely classical context. Here, we appeal to a quantum environment to deal with the conjecture in
Externí odkaz:
http://arxiv.org/abs/1808.01330
Publikováno v:
Physica A Vol. 503, 793 (2018)
It is believed that the canonical gravitational partition function $Z$ associated to the classical Boltzmann-Gibbs (BG) distribution $\frac {e^{-\beta H}} {{\cal Z}}$ cannot be constructed because the integral needed for building up $Z$ includes an e
Externí odkaz:
http://arxiv.org/abs/1804.06229
Publikováno v:
Physica A, Vol. 497 (2018) 310
Typical Tsallis' statistical mechanics' quantifiers like the partition function and the mean energy exhibit poles. We are speaking of the partition function ${\cal Z}$ and the mean energy $<{\cal U}>$. The poles appear for distinctive values of Tsall
Externí odkaz:
http://arxiv.org/abs/1803.08125
Publikováno v:
Physica A Vol 506, p. 1050 (2018)
This paper brings together four distinct but very important physical notions: 1) Entropic force, 2) Entropy-along-a-curve, 3) Tsallis' q-statistics, and 4) Emergent gravitation. We investigate the non additive, classical (Tsallis') q-statistical mech
Externí odkaz:
http://arxiv.org/abs/1711.03866
Publikováno v:
Physica A, Vol. 490, p. 1522 (2018)
We describe the phenomenology of the classical q-path entropy of a phase-space curve. This allows one to disclose an entropic force-like mechanism that is able to mimic some phenomenological aspects of the strong force, such as confinement, hard core
Externí odkaz:
http://arxiv.org/abs/1704.03570
Publikováno v:
Entropy Vol. 19, page 21 (2016)
Interesting nonlinear generalization of both Schr\"odinger's and Klein-Gordon's equations have been recently advanced by Tsallis, Rego-Monteiro, and Tsallis (NRT) in [Phys. Rev. Lett. {\bf 106}, 140601 (2011)]. There is much current activity going on
Externí odkaz:
http://arxiv.org/abs/1611.02083
Publikováno v:
EUROPEAN PHYSICAL JOURNAL B, vol. 90 p. 46 (2017)
We investigate first-order approximations to both i) Tsallis' entropy $S_q$ and ii) the $S_q$-MaxEnt solution (called q-exponential functions $e_q$). It is shown that the functions arising from the procedure ii) are the MaxEnt solutions to the entrop
Externí odkaz:
http://arxiv.org/abs/1604.07889
Publikováno v:
Int. J. Mod. Phys. B, vol 31-175051 (2017)
In this manuscript we investigate quantum uncertainties in a Tsallis' non additive scenario. To such an end we appeal to q-exponentials, that are the cornerstone of Tsallis' theory. In this respect, it is found that some new mathematics is needed and
Externí odkaz:
http://arxiv.org/abs/1511.08720
We advance an exact, explicit form for the solutions to the fractional diffusion-advection equation. Numerical analysis of this equation shows that its solutions resemble power-laws.
Comment: 17 pages. 9 figures. arXiv admin note: substantial te
Comment: 17 pages. 9 figures. arXiv admin note: substantial te
Externí odkaz:
http://arxiv.org/abs/1504.02999