Zobrazeno 1 - 10
of 60
pro vyhledávání: '"Ferraro, Sebastián A."'
Discrete variational methods show excellent performance in numerical simulations of different mechanical systems. In this paper, we introduce an iterative procedure for the solution of discrete variational equations for boundary value problems. More
Externí odkaz:
http://arxiv.org/abs/2206.08968
Autor:
Simões, Alexandre Anahory, Ferraro, Sebastián J., Marrero, Juan Carlos, de Diego, David Martín
Using the nonholonomic exponential map, we generalize the well-known family of Newmark methods for nonholonomic systems. We give numerical examples including a test problem where the structure of reversible integrability responsible for good energy b
Externí odkaz:
http://arxiv.org/abs/2201.13162
Autor:
Zhu, Siyu, Li, Zhi, Chen, Mengye, Wen, Yixin, Gao, Shang, Zhang, Jiaqi, Wang, Jiao, Nan, Yi, Ferraro, Sebastian C., Tsoodle, Theresa E., Hong, Yang
Publikováno v:
In Journal of Hydrology December 2024 645 Part B
Discrete variational methods have shown an excellent performance in numerical simulations of different mechanical systems. In this paper, we introduce an iterative method for discrete variational methods appropriate for boundary value problems. More
Externí odkaz:
http://arxiv.org/abs/2109.05559
Autor:
Anahory Simoes, Alexandre, Ferraro, Sebastián J., Marrero, Juan Carlos, Martín de Diego, David
Publikováno v:
In Journal of Computational and Applied Mathematics 15 March 2023 421
We develop a geometric version of the inverse problem of the calculus of variations for discrete mechanics and constrained discrete mechanics. The geometric approach consists of using suitable Lagrangian and isotropic submanifolds. We also provide a
Externí odkaz:
http://arxiv.org/abs/1708.04123
Autor:
Ferraro, Sebastián, de León, Manuel, Marrero, Juan Carlos, de Diego, David Martín, Vaquero, Miguel
In this paper we develop a geometric version of the Hamilton-Jacobi equation in the Poisson setting. Specifically, we "geometrize" what is usually called a complete solution of the Hamilton-Jacobi equation. We use some well-known results about symple
Externí odkaz:
http://arxiv.org/abs/1606.00847
Autor:
Ferraro, Sebastián Ariel, Domingo, Mariela Gisele, Etcheverrito, Analía, Olmedo, Daniel Gustavo, Tasat, Deborah Ruth
Publikováno v:
In Journal of Trace Elements in Medicine and Biology January 2020 57
Numerical methods that preserve geometric invariants of the system, such as energy, momentum or the symplectic form, are called geometric integrators. In this paper we present a method to construct symplectic-momentum integrators for higher-order Lag
Externí odkaz:
http://arxiv.org/abs/1410.5766
In this paper, we will discuss new developments regarding the Geometric Nonholonomic Integrator (GNI) [23, 24]. GNI is a discretization scheme adapted to nonholonomic mechanical systems through a discrete geometric approach. This method was designed
Externí odkaz:
http://arxiv.org/abs/1312.1587